Synopsis: Small-scale hydraulics

Rotating electric fields can power the flow of water along a nanochannel.
Synopsis figure
Illustration: D. J. Bonthuis et al., Phys. Rev. Lett. (2009)

Biology is rife with examples of fluids flowing through tiny spaces, such as blood surging through a capillary or water transporting nutrients across the porous membrane of a cell. In such exceptionally narrow channels, the orientation of the molecules in the fluid can determine the rate, and even the mechanism of flow.

Taking a cue from biology, scientists are now designing nanofluidic devices in which molecular interactions at the walls of a narrow channel are engineered to control fluid flow. With this motivation in mind, Douwe Jan Bonthuis, Dominik Horinek, Lydéric Bocquet, and Roland Netz at Technische Universität München in Germany are exploring the problem of how static and rotating electric fields can affect the motion of a dipolar liquid, like water, when it is confined to a nanochannel.

Writing in Physical Review Letters, they base their calculations on a generalization of the Navier-Stokes equation—the fundamental equation to describe fluid mechanics—by taking into account the rotational motion and relaxation of water molecules and the boundary conditions at the surface of the nanochannel.

In contrast to earlier predictions, they find that applying a static electric field parallel to the interface will not cause fluid flow. However, a rotating electric field can generate vorticity at the interface that leads to a net motion of water.

Bonthuis et al.’s work suggests one way to convert electric energy into fluid flow at the nanoscale. It is also of interest for understanding electro-osmotic effects where ions in solution aggregate toward a charged wall and can drag fluid in the presence of an external electric field. – Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

NanophysicsFluid Dynamics

Previous Synopsis

Atomic and Molecular Physics

Getting the calcium you need

Read More »

Next Synopsis

Atomic and Molecular Physics

Orientation without perturbation

Read More »

Related Articles

Focus: Why Sediments Are So Uniform
Fluid Dynamics

Focus: Why Sediments Are So Uniform

A new theory suggests that sedimenting particles of irregular shape will drift horizontally as they fall, a result that may resolve a long-standing puzzle. Read More »

Focus: Making Rogue Waves with Wind and Water
Fluid Dynamics

Focus: Making Rogue Waves with Wind and Water

Wind-generated waves in a ring-shaped water tank can spontaneously grow into single behemoth waves, mimicking a poorly understood ocean phenomenon.   Read More »

Synopsis: Small Particles Untangle Polymer Chains
Soft Matter

Synopsis: Small Particles Untangle Polymer Chains

Adding nanoparticles to molten polymer disentangles its constituent molecular chains, allowing them to flow more easily. Read More »

More Articles