Synopsis: Quantum Testing

Testing hypotheses about the validity of different dynamical models can now be done on a much wider range of quantum systems.

Science is all about making hypotheses and testing them, so methods for judging the validity of a hypothesis are essential tools in the kit of any researcher. In physics, the question might be “does this complex system exhibit quantum behavior?” which would be answered by quantum hypothesis testing. The formalism of quantum hypothesis testing began to gel in the 1970s, but the techniques have been limited to discriminating between hypothetical initial quantum states. Writing in Physical Review Letters, Mankei Tsang of the National University of Singapore proposes a more general way of hypothesis testing that applies to a wider range of questions about any quantum system.

Tsang builds on the foundation of statistical inference for hypothesis testing, but extends this to a comparison of different dynamical models to describe a system, rather than just initial states. The author shows how to compute a likelihood ratio, which is the ratio of probabilities of an observation record assuming one or another hypothetical model. The likelihood ratio determines which model is more likely, and Tsang applies this to two examples. In one case, Tsang considers the detection of a weak stochastic signal by a quantum sensor, such as might be needed in gravitational wave detection. The second example concerns determining whether a system is quantized, which is applicable in situations where, for instance, a macroscopic resonator is being cooled to eliminate thermal noise and elicit quantum behavior. These two examples demonstrate a more rigorous and efficient analysis of hypotheses for weak signals or when the detection task is challenging. – David Voss


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationQuantum Physics

Next Synopsis

Nonlinear Dynamics

Science of Slosh

Read More »

Related Articles

Viewpoint: Seeing Scrambled Spins
Atomic and Molecular Physics

Viewpoint: Seeing Scrambled Spins

Two experimental groups have taken a step towards observing the “scrambling” of information that occurs as a many-body quantum system thermalizes.   Read More »

Viewpoint: Type-II Dirac Fermions Spotted
Quantum Information

Viewpoint: Type-II Dirac Fermions Spotted

Three separate groups report experimental evidence of novel type-II Dirac quasiparticles, suggesting possible applications in future quantum technology. Read More »

Viewpoint: Inducing Transparency with a Magnetic Field
Optics

Viewpoint: Inducing Transparency with a Magnetic Field

A magnetic field applied to an atomic sample in an optical cavity generates optical transparency that could be used to enhance the frequency stability of lasers. Read More »

More Articles