Synopsis: The Gravitational Aharonov-Bohm Effect

The gravitational version of the Aharonov-Bohm effect, where particles are affected by the gravitational potential in the absence of a force, could be demonstrated in a lab-scale experiment using ultracold atoms.

The celebrated Aharonov-Bohm experiment showed that the electromagnetic potential—not just the fields—could have measurable effects on quantum particles. Now Michael Hohensee of the University of California, Berkeley, and his colleagues, have an idea for the gravitational equivalent of this experiment. Their proposed measurement, which they describe in Physical Review Letters, would demonstrate that particles need not experience any gravitational force in order to experience measurable effects from the gravitational potential, showing that the potential is the true fundamental quantity, not the force. Although this principle is not a surprise, it hasn’t yet been demonstrated experimentally because gravitational effects are so weak.

The team imagines using an optical lattice—a periodic potential created by counter-propagating lasers beams—to move ultracold atoms back and forth along a line. Placing two “source” masses, with holes bored through their centers, along the optical lattice would create three locations where, in the absence of any additional masses, the atoms feel zero gravitational force: near the center of each mass and at the point halfway between them.

An atom could be split into two matter waves, one of which would be moved inside a source mass, and the other halfway between the two source masses. After a period of time on the order of a second, the two matter waves would be brought back together, and their interference pattern would show a phase difference that could only result from the gravitational potential. In addition to the Aharonov-Bohm effect, the result would also constitute the first demonstration of a force-free gravitational redshift, where the two atomic matter waves serve as clocks experiencing different gravitational potentials. – David Ehrenstein


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular PhysicsGravitation

Previous Synopsis

Next Synopsis

Related Articles

Viewpoint: A Possible Failure of Determinism in General Relativity
Astrophysics

Viewpoint: A Possible Failure of Determinism in General Relativity

A numerical analysis of perturbations of a charged black hole suggests that the usual predictability of the laws of physics can fail in general relativity. Read More »

Viewpoint: A Multimode Dial for Interatomic Interactions
Optics

Viewpoint: A Multimode Dial for Interatomic Interactions

A tunable multimode optical cavity modifies interactions between atomic condensates trapped in its interior from long range to short range, paving the way towards exploring novel collective quantum phenomena. Read More »

Synopsis: Twisted Cavity Is a One-Way Light Path
Atomic and Molecular Physics

Synopsis: Twisted Cavity Is a One-Way Light Path

A cavity containing spin-polarized atoms can serve as an optical isolator that breaks time-reversal symmetry by letting only forward-moving light pass.   Read More »

More Articles