Synopsis: Fluid Invasion

A phenomenon called capillary fracturing determines how fluids drain into tightly packed porous granular media.
Synopsis figure
R. Holtzman et al., Phys. Rev. Lett. (2012)

The cracks that form in drying soil or paint are evidence of fracture in wet granular materials. Similar fracturing also plays a role in environmentally sensitive scenarios such as extracting petroleum from the deep seas, CO2 sequestration, and fracking, where pressurized fluid is injected into rocks to release natural gas.

These are all examples of one fluid displacing another in porous media. While work in recent years has contributed to a clearer understanding of this wide-ranging phenomenon, most of it focused on either rigid porous media or porous materials with a low packing density. In Physical Review Letters, Ran Holtzman and colleagues at the Massachusetts Institute of Technology, Cambridge, address how the fluid-fluid displacement takes place in a frictional granular material at high packing fraction. They injected air into a cylinder containing tightly packed water-saturated glass beads, while varying the injection rate of the air, the size of the beads, and the confinement stress from weights placed on a rigid disk that rests on top of the beads. They observed that there are three ways—distinguished by the pattern of the air’s path through the beads—in which one fluid can invade another: capillary fingering, viscous fingering, and capillary fracturing, which result from competition between the viscous and capillary forces on the one hand and pressure forces and internal friction on the other. The authors’ experiment and scaling analysis show that capillary fracturing is a consequence of the interfacial tension between the fluids and can take place at vanishingly small injection rates, unlike, say, fracking. – Sami Mitra


Features

More Features »

Announcements

More Announcements »

Subject Areas

Fluid DynamicsSoft Matter

Previous Synopsis

Statistical Physics

The Opposite of Friction

Read More »

Related Articles

Focus: “Gas Marbles” Store Air in Strong Spheres
Soft Matter

Focus: “Gas Marbles” Store Air in Strong Spheres

A spherical shell made of plastic microspheres can store pressurized gas in a tiny volume and might be used to stabilize foams or to deliver specialized gases. Read More »

Synopsis: Capillary Effect in Grains Explained
Soft Matter

Synopsis: Capillary Effect in Grains Explained

Numerical simulations show that a previously observed capillary-like action in vibrating grain systems is due to convective motion of the grains.   Read More »

Focus: Self-Spinning Grains Prove Granular Theory
Soft Matter

Focus: Self-Spinning Grains Prove Granular Theory

Measurements of a two-dimensional “gas” made up of particles that spin when shaken bolsters a gas-like theory for granular materials. Read More »

More Articles