Synopsis

Electrons in Graphene Beat the Heat

Physics 5, s117
Graphene researchers show the leakage of heat from electrons to sound vibrations is small enough to allow for sensitive light detectors.
A. C. Betz et al., Phys. Rev. Lett. (2012)

Among the many possible applications for graphene are sensitive optical detectors, called bolometers, that respond directly to heating of electrons by light. The extreme stiffness and low density of the two-dimensional carbon sheet make its internal vibrations unusual and only very slowly warmed by nearby electrons, which should make it easier to heat the electrons alone. In Physical Review Letters, Andreas Betz, of the Laboratoire Pierre Aigrain (ENS-CNRS) in France, and colleagues report painstaking measurements of the vibrational warming.

Like many other materials, graphene has two different types of vibrational waves. Higher-energy waves involve neighboring atoms moving in different directions. These “optical” vibrations ultimately limit the extraordinary acceleration of electrons in graphene. But gently heated electrons don’t have enough energy to create these vibrations. Instead, they have to share their energy with “acoustic” vibrational modes, in which nearby atoms all move in synchrony, as in ordinary sound waves. To explore this slow energy sharing, the researchers wired up special single-layer graphene samples and cooled them to the temperature of liquid helium. They then measured how the electrical noise at microwave frequencies varied as they heated the electrons with a steady current. The noise indicated that the electron temperature rose as the fourth root of the injected electrical power, as expected for sharing with two-dimensional vibrations. But the overall leakage rate from electrons to vibrations was only about a tenth of the expected value, a difference the researchers attribute to imperfections in the film. – Don Monroe


Subject Areas

NanophysicsGrapheneOptoelectronics

Related Articles

Shape Matters in Self-Assembly
Nanophysics

Shape Matters in Self-Assembly

A theoretical study of self-assembly finds that hexagon-shaped building blocks can form large structures faster than triangular or square blocks. Read More »

Levitated Nanoresonator Breaks Quality-Factor Record
Nanophysics

Levitated Nanoresonator Breaks Quality-Factor Record

A nanoresonator trapped in ultrahigh vacuum features an exceptionally high quality factor, showing promise for applications in force sensors and macroscopic tests of quantum mechanics.  Read More »

Long-Range Resonances Slow Light in a Photonic Material
Nanophysics

Long-Range Resonances Slow Light in a Photonic Material

Light–matter interactions in certain one-dimensional photonic materials can bring light nearly to a standstill, an effect that researchers show requires consideration of long-range interactions between the material’s components. Read More »

More Articles