Synopsis: Power Falls in Sync

According to network theory, decentralizing a power grid to accommodate more energy sources may improve the synchronization of its components.

In his book Cybernetics, mathematician Norbert Wiener asked “How is it that thousands of neurons or fireflies or crickets can suddenly fall into step with one another, all firing or flashing or chirping at the same time, without any leader or signal from the environment?” The question is at the heart of many network theories, which try to understand how a large number of interacting systems enter into collective and synchronized behavior. In Physical Review Letters, Martin Rohden and colleagues at the Max Planck Institute in Göttingen, Germany, use network theory to study the synchronization properties of electric power grids.

Robust synchronization underpins the stable operation of a grid. Every power source and every piece of equipment must run on the same 50 or 60 hertz clock. Desynchronization can mean failures and massive power blackouts.

Rohden et al. model the British grid as a system of coupled oscillators and analyze the differences between the existing grid, which is based on large centralized power plants, and alternative grids with widely distributed small-scale power sources. The key finding of their work is that distributing power generation supports self-organized synchronization—the ability to maintain phase synchrony of voltages across the grid without an external control—because it removes the sensitivity of the system to a few heavily loaded lines.

As countries steer towards a more balanced energy portfolio that includes a broad array of distributed renewable energy sources, the research suggests that decentralization may make future power grids smarter than expected. – Matteo Rini


Features

More Features »

Subject Areas

Nonlinear DynamicsEnergy Research

Previous Synopsis

Next Synopsis

Semiconductor Physics

Topological Insulators by the Slice

Read More »

Related Articles

Focus: Wave Trick May Lead to Wireless Charging at a Distance
Energy Research

Focus: Wave Trick May Lead to Wireless Charging at a Distance

A technique involving wave interference may improve the practicality of charging a phone wirelessly at some distance from the power source. Read More »

Viewpoint: Brain Motion Under Impact
Nonlinear Dynamics

Viewpoint: Brain Motion Under Impact

A numerical study suggests that head impacts primarily induce a few low-frequency, damped modes of vibration in brain tissue, a finding that could inform the design of sports helmets. Read More »

Focus: City Structure Influences Nighttime Temperatures
Statistical Physics

Focus: City Structure Influences Nighttime Temperatures

Mathematical analysis of the two-dimensional layout of a city reveals much about its three-dimensional structure and provides useful measures of the urban heat island effect. Read More »

More Articles