Synopsis: Riding Planetary Waves

A new study describes giant, high-altitude air waves that redistribute energy in the climate system.
Synopsis figure
NASA/GSFC

Rossby waves are planetary-scale meanders in the high-altitude winds that flow about 10km above ground (between the troposphere and the stratosphere). They arise because of the temperature difference between polar air and tropical air, together with variation of the Coriolis force with latitude. Meteorologists know them well, as they determine low-pressure systems that have a major influence on the weather. But according to a study published in Physical Review Letters, such waves may determine more than whether it will rain or shine in the short term. By transporting energy around the planet, they may act as important interconnecting links between remote regions, thereby affecting the longer-term dynamics of the climate system.

Yang Wang, at the Bar-Ilan University in Israel, and colleagues describe the climate system using a recently developed approach based on network theory: different regions of the world are considered as nodes of a network, interconnected by links representing the channels through which heat and materials (air and water) are exchanged. The authors apply the method to extract the statistical properties of these links from a database of climate parameters (such as temperature, pressure, and wind velocities) measured during the years 1948–2010. These links exhibit the patterns of an atmospheric Rossby wave: they have undulations that match Rossby wavelengths (3500, 7000, and 10000km), are aligned along the same directions, and have the same seasonality.

The finding suggest that Rossby waves might be a dominant channel that connects the climate network—an observation that may make network theory a key component for refining current climate models. – Matteo Rini


Features

More Features »

Announcements

More Announcements »

Subject Areas

Fluid DynamicsGeophysics

Previous Synopsis

Particles and Fields

Neutrinoless Decays Are a No Show Again

Read More »

Next Synopsis

Materials Science

Strength Training

Read More »

Related Articles

Focus: Drops Falling in Clouds Make More Drops
Fluid Dynamics

Focus: Drops Falling in Clouds Make More Drops

Experiments with a simplified version of the atmosphere show that falling drops seed many smaller droplets in their wake. Read More »

Focus: Superpropulsion of Liquid Drops
Fluid Dynamics

Focus: Superpropulsion of Liquid Drops

An oscillating surface can propel a drop of water or a springy ball upward at a speed higher than that of the moving surface. Read More »

Synopsis: Teaching Fish How to Swim
Fluid Dynamics

Synopsis: Teaching Fish How to Swim

A new model of swimming fish and cetaceans pinpoints the parameters that matter most for efficient motion. Read More »

More Articles