Synopsis: Cracking Up

A new model explains why cracks in cooling lava tend to form hexagonal patterns.

Cooling lava shrinks and cracks, often forming stunning structures, such as the hexagonal columns found in the volcanic remains at Ireland’s Giant’s Causeway. Although cracks spread from the top down, hexagonal columns can emerge from a crack pattern on the surface that is initially rectangular. Researchers now explain why, using a new model that tracks the cracks from the moment they form at the surface to the time when they have penetrated through the cooling lava. The model could be applicable to crack patterns that form in other materials, such as cooling ceramics.

The surface of cooling lava contracts more quickly than the still-warm liquid underneath, creating a stress that is relieved by the formation of cracks. Martin Hofmann from the Dresden University of Technology, Germany, and colleagues considered a uniform lava layer and calculated the energy released from different crack patterns. They found that, in the initial stages of cooling, when the cracks start to appear at random places on the surface, the energy release is greatest if the cracks intersect at 90-degree angles. But as the lava continues to cool and shrink, and the cracks collectively start to penetrate into the bulk, more energy is released per crack if they intersect at 120-degree angles. This transition from individual to collective growth of the cracks drives the pattern from rectangular to hexagonal. The hexagonal pattern is then maintained as the lava cools further, eventually leading to an array of hexagonal columns, similar to those seen in nature.

This research is published in Physical Review Letters.

–Katherine Wright


More Features »


More Announcements »

Subject Areas


Previous Synopsis

Next Synopsis

Biological Physics

Noise Gives Biology a Hand

Read More »

Related Articles

Focus: Graphene Sliding on Graphene

Focus: Graphene Sliding on Graphene

Creating a bulge in a graphene sheet offers the first measurement of the shear forces between graphene layers, an essential factor in many graphene-based devices. Read More »

Synopsis: How Ice Bridges Form

Synopsis: How Ice Bridges Form

New theoretical work predicts the conditions under which sea ice will clog a narrow channel to create a natural bridge across it. Read More »

Focus: Hard and Soft Bounces Explain Asteroid’s Surface Structure

Focus: Hard and Soft Bounces Explain Asteroid’s Surface Structure

Experiments and computer simulations show that the segregation of small and large rocks on an asteroid’s surface can arise from the way particles hitting the surface collide with the rocks already present. Read More »

More Articles