Synopsis

Number of Cycles Matters for a Quantum Engine

Physics 10, s13
Theoretical calculations show that the performance of a quantum heat engine over several cycles can’t be judged by analyzing just a single cycle.
G. Watanabe et al., Phys. Rev. Lett. (2017)

A heat engine is remarkably easy to characterize. Run it for just one cycle, and you can calculate the work it performs over several cycles: the work done scales linearly with the number of cycles considered. Gentaro Watanabe from Zhejiang University in China and colleagues now say that’s not the case if the engine is a quantum system, as opposed to a classical one. The reason is the usual suspect: quantum correlations.

Using analytical and numerical tools, Watanabe and co-workers studied the performance of a heat engine that comprised a quantum system (a two-level atom) connected to a hot and a cold thermal bath on one side and an external system (a harmonic oscillator) on the other. The quantum system extracts thermal energy from the hot bath to do mechanical work on the external system, dumping any unused energy into the cold bath. Analyzing the Hamiltonian of the system over n cycles, and factoring in all of the couplings between the engine’s different elements as well as intercycle quantum correlations in the state of the external system, the researchers demonstrated that the average amount of work done on the external system during n cycles is not proportional to n. Instead, the work is described by a mathematical expression that involves a term with a linear dependence on n, just like in classical heat engines, and a nonlinear oscillatory (cosine) term that is tied to the quantum correlations.

As thermal machines are pushed towards increasingly smaller sizes—to the nanoscale and beyond—their operation will eventually become governed by quantum correlations. The results should therefore have ramifications for the study and characterization of tiny thermal devices.

This research is published in Physical Review Letters.

–Ana Lopes

Ana Lopes is a Senior Editor of Physics.


Subject Areas

Statistical PhysicsQuantum Physics

Related Articles

Link Verified between Turbulence and Entropy
Statistical Physics

Link Verified between Turbulence and Entropy

The verification of a 63-year-old hypothesis indicates that nonequilibrium statistical mechanics could act as a theoretical framework for describing turbulence. Read More »

Quantum “Torch” Begins Its Relay
Quantum Physics

Quantum “Torch” Begins Its Relay

A quantum light source is touring European labs in preparation for the 2025 International Year of Quantum Science and Technology. Read More »

Quantum Machine Learning Goes Photonic
Quantum Physics

Quantum Machine Learning Goes Photonic

Measuring a photon’s angular momentum after it passes through optical devices teaches an algorithm to reconstruct the properties of the photon’s initial quantum state. Read More »

More Articles