Synopsis: Five Charming New Baryons

The discovery of five new baryonic states at the Large Hadron Collider could shed light on the strong nuclear force.
Synopsis figure
CERN

Even at the most powerful particle accelerator on Earth, the discovery of a new particle is a big deal. Finding five new baryons in one go, as the Large Hadron Collider beauty experiment (LHCb) has done, is truly historical. The result will help researchers refine theories of the strong interaction, which binds quarks together in conventional baryons, like protons and neutrons, and in more exotic ones, like tetraquarks and pentaquarks.

The five new particles are excited states of the Omega-c-zero baryon (Ωc0), which is made up of one charm quark and two strange quarks. After the Ωc0 was discovered in 1994, physicists predicted the existence of its heavier excited states. But the very low production rates of these particles and their complex decay modes made them hard to observe. LHCb succeeded in seeing the states by monitoring the products of their decay: each baryon first decays via the strong force into another baryon called Ξc+, which then decays via the weak force into a proton, a kaon, and a pion.

Thanks both to the ultrasensitive detectors that are able to distinguish the final products of the decay, and to the accumulation of large datasets from LHC’s first and second runs, LHCb was able to infer the presence of five excited states of Ωc0. The particles, whose names reflect their masses in MeV, are Ωc(3000)0, Ωc(3050)0, Ωc(3066)0, Ωc(3090)0, and Ωc(3119)0. The collaboration now intends to measure the spin and parity values of each particle. These quantities will help researchers establish whether the five states can fit into the quark model as standard baryons or whether they have a more exotic nature like pentaquarks.

This research is published in Physical Review Letters.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Atomic and Molecular Physics

Cooling Multiple Atoms in a Cavity

Read More »

Next Synopsis

Energy Research

Protons in the Fast Lane

Read More »

Related Articles

Synopsis: Minimum Mass of Magnetic Monopoles
Particles and Fields

Synopsis: Minimum Mass of Magnetic Monopoles

A new analysis places some of the tightest bounds yet on the mass that magnetic monopoles should have if they exist. Read More »

Synopsis: Relativity Survives Scrutiny, Again
Gravitation

Synopsis: Relativity Survives Scrutiny, Again

Two independent studies show no evidence that a fundamental symmetry in relativity, known as Lorentz invariance, breaks down. Read More »

Synopsis: New Constraints on Axion-Gluon Interaction Strength
Particles and Fields

Synopsis: New Constraints on Axion-Gluon Interaction Strength

An analysis of spin-precession data of atoms and neutrons sets some of the tightest limits to date on the strength of interactions between axions and gluons or nucleons. Read More »

More Articles