Synopsis: Tracking a Trapped Ion Crystal

A spin-based technique is able to measure the center-of-mass motion of a 2D crystal of trapped ions to a precision 40 times below the object’s zero-point energy.
Synopsis figure
K. A. Gilmore et al., Phys. Rev. Lett. (2017)

Scientists are able to measure tiny forces, as well as gravitational waves, by recording the slightest budges of a test mass. Typically, this test mass is a solid object, like a vibrating cantilever or a suspended mirror, but a new experiment uses a two-dimensional crystal of trapped ions as its force sensor. With a measurement scheme based on the spin state of the ions, the researchers detect center-of-mass displacements of the crystal as small as 50 picometers. This distance is 40 times less than the amplitude of the zero-point motion associated with the crystal’s quantum ground state. The technique could allow detection of extremely small electric fields, which may prove useful in the search for dark matter.

Kevin Gilmore from the National Institute of Standards and Technology in Boulder, Colorado, and his colleagues trapped roughly 100 beryllium ions with electric and magnetic fields, forming a horizontally oriented single-plane crystal. The ions were cooled to 0.5 millikelvin, and their spins were aligned with a magnetic field pointing up. The researchers then exposed the ions to an optical wave that caused the spins to rotate by an amount that depended on their vertical displacement from the trap center. After several milliseconds of rotation, the team measured the fraction of ions with spin up, which allowed them to infer the center-of-mass displacement of the crystal in the vertical direction. The device acts as a force sensor with a predicted sensitivity of less than 1 yoctonewton (1024 newtons). The ion system can also measure electric fields down to 1 nanovolt/meter, which could potentially pick up the signature of hypothetical dark matter particles called “hidden photons.”

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


More Features »


More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Next Synopsis

Related Articles

Viewpoint: Sharpening the Features of Optical Lattices
Atomic and Molecular Physics

Viewpoint: Sharpening the Features of Optical Lattices

Lasers trap cold atoms in a lattice of potential barriers much narrower than the lasers’ wavelength. Read More »

Focus: <i>Video</i>—Condensate Duo Puts on a Show
Atomic and Molecular Physics

Focus: Video—Condensate Duo Puts on a Show

Simulations of the mixing of two oppositely polarized Bose-Einstein condensates produce fingering patterns that look like those of classical fluids. Read More »

Viewpoint: Atoms Oscillate Collectively in Large Optical Lattice
Atomic and Molecular Physics

Viewpoint: Atoms Oscillate Collectively in Large Optical Lattice

By coupling atoms in an optical lattice to a thin elastic membrane, researchers have demonstrated a dynamic instability that is evidence of collective atomic motion. Read More »

More Articles