Synopsis: Filling in a Tetraquark’s Profile

An analysis of electron-positron collision data has determined the spin and parity of a particle thought to consist of four quarks.

Over the past few years, physicists have detected several particles that are best explained as having four quarks—rather than the usual two or three. One of the first candidates for this “tetraquark” class was the Zc(3900) particle, with a mass of 3900 MeVc2 (see 17 June 2013 Viewpoint). Although the Zc(3900) appears to be made up of two charm quarks plus an up quark and down quark, much mystery still surrounds this particle. To improve our understanding, the BESIII experiment at the Beijing Electron Positron Collider has now measured two important quantum parameters of Zc(3900)—its spin and its parity.

The first sightings of Zc(3900) were in 2013 by the BESIII Collaboration and, independently, by the Belle Collaboration in Japan. Both groups detected the new particle’s signature in electron-positron collisions that produce a J𝜓 meson and two pions. Since then, the BESIII Collaboration has found evidence of a tetraquark with mass of 3885 MeVc2 in electron-positron collisions producing D mesons. With such a small mass difference, an obvious question is, could this Zc(3885) particle just be Zc(3900) (see 15 January 2014 Synopsis)?

One way to test the correspondence between the two particles is to compare their spin and parity values. The BESIII Collaboration selected over 6000 events in their data that match the criteria for Zc(3900). Performing a so-called partial wave analysis, they compared the selected events to simulations with different values for the particle’s spin and parity. The simulation with spin 1 and even parity gave the best fit, implying that Zc(3900) has the same spin and parity as Zc(3885), whose parameters were measured previously. The results support the hypothesis that the two particles are actually the same.

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Next Synopsis

Fluid Dynamics

Teaching Fish How to Swim

Read More »

Related Articles

Synopsis: Relativity Survives Scrutiny, Again
Gravitation

Synopsis: Relativity Survives Scrutiny, Again

Two independent studies show no evidence that a fundamental symmetry in relativity, known as Lorentz invariance, breaks down. Read More »

Synopsis: New Constraints on Axion-Gluon Interaction Strength
Particles and Fields

Synopsis: New Constraints on Axion-Gluon Interaction Strength

An analysis of spin-precession data of atoms and neutrons sets some of the tightest limits to date on the strength of interactions between axions and gluons or nucleons. Read More »

Synopsis: Connecting Higgs to Dark Matter
Particles and Fields

Synopsis: Connecting Higgs to Dark Matter

New theoretical work places more stringent constraints on dark matter properties derived from particle physics experiments. Read More »

More Articles