Synopsis: Casimir Force Between Two Spheres

Researchers use an atomic force microscope to measure the Casimir force between two spheres, paving the way for studying the force acting between objects of any shape.
Synopsis figure
J. Munday/University of Maryland

Two conductors separated by a submicron distance experience a weak attraction due to quantum fluctuations of the electromagnetic vacuum between the objects. But measuring this so-called Casimir force is challenging, as the objects must be aligned with nanoscale precision. Now researchers have overcome this difficulty by using an atomic force microscope (AFM), measuring the Casimir force between two spheres for the first time. The new approach could allow Casimir-force experiments on objects with any shape, enabling researchers to assess the force’s impact on future nanoscale technologies for accelerometers, microphones, or pressure sensors.

Hendrik Casimir predicted his namesake effect in 1948 based on a theoretical description of two parallel mirrors. But this configuration is hard to study experimentally, as small tilts of the mirrors can dramatically change the Casimir force’s strength. A plane-sphere configuration—used in most experiments—solves this problem because tilts of the plane or lateral movements of the sphere cause only a minor change in the distance between the two conductors. Other configurations, however, remain hard to measure, limiting researchers’ ability to probe and understand Casimir forces.

Jeremy Munday and colleagues at the University of Maryland, College Park, tackle a two-sphere configuration, attaching one sphere to a substrate and the other to the oscillating cantilever of an AFM. Exploiting the AFM’s nanoscale spatial control, the team keeps the spheres centered to within 1% of their radii, which allows the researchers to characterize the Casimir force as a function of distance and the spheres’ radii. Munday and his colleagues suggest that the AFM-based alignment procedure will enable precise measurements of Casimir forces between more complex objects—for example, between a hole and a needle—in air, vacuum, or liquids.

This research was published in Physical Review Letters.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


More Features »

Subject Areas

Quantum PhysicsNanophysics

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

A Clearer View of the Atomic World

Read More »

Related Articles

Viewpoint: <i>PT</i> Symmetry Goes Quantum
Quantum Physics

Viewpoint: PT Symmetry Goes Quantum

A proposed microwave circuit would allow exploration of the quantum side of parity-time symmetry, which, in classical devices, gives rise to effects like one-way or stopped light. Read More »

Synopsis: Fitting a Bose-Einstein Condensate inside an Atom
Atomic and Molecular Physics

Synopsis: Fitting a Bose-Einstein Condensate inside an Atom

A giant Rydberg atom enveloping thousands of ordinary atoms could be used to study ion-atom interactions at ultralow temperatures. Read More »

Synopsis: Pathway to Quantum Thermalization
Quantum Physics

Synopsis: Pathway to Quantum Thermalization

Experiments involving a magnetic quantum Newton’s cradle provide insights into how interacting quantum particles achieve thermal equilibrium. Read More »

More Articles