Synopsis

Reversible Self-Assembly of Macroscopic “Polymers”

Physics 11, s111
Reconfigurable materials step closer to reality with a colloidal system that self-assembles, disassembles, and reassembles into polymer-like chains in response to temperature changes.
A. McMullen/ New York University

Programming materials to reconfigure themselves into new structures might sound like science fiction, but researchers are working on exactly that goal. Now a team led by Jasna Brujic from New York University has taken a step toward realizing such a material from micrometer-sized drops linked together with DNA. They demonstrate large-scale self-assembly of the drops into long polymer-like chains that they then repeatedly destroy and rebuild by changing the temperature. While the team has, so far, only created 2D chains from these so-called colloidomers, they say that the system could potentially lead to 3D materials that can be continuously reconfigured.

The basis for the team’s material is a solution containing drops formed by mixing oil and water. The researchers added two types of DNA to the solution—a complimentary pair that could bind together. When one strand of each type attached to two nearby drops, they could form a "bond." By varying the DNA concentration in the solution, the team tuned the number of “bonds” between the drops, creating linear chains from drops with two bonds and branched networks from drops with three or more bonds. By heating the solution, the team melted the DNA, causing the chains to disassemble. The structures then spontaneously reassembled after a subsequent cooling.

Using this method, the team bulk synthesized over 22,000 colloidomers with lengths ranging from 2 to 20 drops. (Researchers have created similar structures from solid particles linked with DNA, but the synthesis was on a much smaller scale and proceeded via a different route.) Analyzing the statistical behavior of the chains, the team found that they are fully flexible—the chains can arrange themselves into any configuration—much like their tinier polymer cousins. The team says that they are working on creating 3D colloidomers, a step that requires matching the densities and refractive indices of the various liquids.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Senior Editor of Physics.


Subject Areas

Soft MatterMaterials Science

Related Articles

Witnessing the Birth of Skyrmions
Condensed Matter Physics

Witnessing the Birth of Skyrmions

Using thin layers of chiral nematic liquid crystals, researchers have observed the formation dynamics of skyrmions. Read More »

Thermal Conductivity Not Too Hot to Handle
Materials Science

Thermal Conductivity Not Too Hot to Handle

A radiometry technique directly measures thermal conductivity in molten metals and confirms the relationship with electrical resistivity. Read More »

Another Twist in the Understanding of Moiré Materials
Materials Science

Another Twist in the Understanding of Moiré Materials

The unexpected observation of an aligned spin polarization in certain twisted semiconductor bilayers calls for improved models of these systems. Read More »

More Articles