Synopsis: A Possible Quantum Computing Boost 

A hybrid quantum-classical computing algorithm could solve a basic computer science problem faster than a classical computer.
Synopsis figure
V. Dunjko/Leiden University

As companies race to build bigger quantum computers, it’s still unclear what near-term devices made of 100 qubits or less will be good for. Searching for applications, researchers are developing algorithms where quantum computing could boost performance. Now, Vedran Dunjko of Leiden University in the Netherlands and colleagues show that a small quantum computer can speed up an algorithm for solving the so-called 3SAT problem, a basic problem that is difficult for classical computers.

The 3SAT problem is a type of basic logic puzzle that tries to find values for some number of Boolean variables in an equation such that given combinations of groups of three return a true value. These problems show up in optimization algorithms such as scheduling and planning tasks, as well as statistical physics. However, classical computers likely cannot solve them efficiently with brute-force methods.

The researchers based their quantum method on a classical solution for solving 3SAT problems known as Schöning’s algorithm. They found that the quantum algorithm boosts performance only if the number of Boolean variables does not exceed a threshold that depends on the number of qubits in the computer. Thus they propose a quantum-classical hybrid algorithm that first reduces the number of variables on a classical computer and then switches to a quantum computer when the number of variables reaches the threshold. However, the researchers point out that the algorithm assumes error-corrected qubits, which hardware developers have not achieved yet. To implement the algorithm on near-term devices, the researchers say it would need to be further tailored to specific hardware.

This research is published in Physical Review Letters.

–Sophia Chen

Sophia Chen is a freelance science writer based in Tucson, Arizona.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum Information

Previous Synopsis

Interdisciplinary Physics

How Walkers Avoid Collisions

Read More »

Next Synopsis

Materials Science

Fresh Light on Nonthermal Electrons

Read More »

Related Articles

Synopsis: Lightscape Traps Rydberg Atoms in the Dark
Optics

Synopsis: Lightscape Traps Rydberg Atoms in the Dark

A holographic technique confines excited Rydberg atoms in the central dark region of a 3D light-intensity pattern.   Read More »

Synopsis: A Few Qubits Go a Long Way
Quantum Information

Synopsis: A Few Qubits Go a Long Way

The right combination of quantum and classical computations allows for accurate quantum chemistry simulations using surprisingly few qubits. Read More »

Viewpoint: Quantum Computer Crosscheck
Quantum Information

Viewpoint: Quantum Computer Crosscheck

A new experiment demonstrates how to verify the output from one quantum computer by comparing it to the output of a second quantum computer. Read More »

More Articles