Synopsis

Hints of an Equation of State for Granular Materials

Physics 12, s10
Experiments with a granular system have confirmed a temperature-like variable that could lead to an equation of state for this class of materials.
E. Bililign/North Carolina State University

The behavior of a gas can be predicted using equations of state, which describe the state of matter using variables such as temperature, pressure, and volume. Whether a similar approach applies to granular materials—aggregates of unbound, macroscopic particles—is uncertain, as the constituents of such materials do not experience thermal motion. Now, researchers at North Carolina State University in Raleigh have identified, through experiments, one temperature-like quantity that could constitute a variable of state in such an equation. The work could inspire applications to real-life particle-based systems such as calving glaciers and biological cells.

Ephraim Bililign and colleagues laid nearly 900 plastic disks on a square and squeezed them from the sides so that they jammed together. They investigated three pressure regimes: uniaxial compression, biaxial compression, and shearing (with one wall pushed in and an adjacent wall withdrawn). The researchers mapped the stress distribution for each regime by observing polarized light transmitted through the disks.

The team represented the interparticle forces as a mosaic of tiles whose dimensions depended on the local stress magnitude. They found that a previously introduced quantity related to the sizes of these tiles, which they termed keramicity, is conserved across all regimes for a given confining pressure. In the same way that temperature describes how entropy increases with total energy, keramicity describes how entropy increases with applied stress. The team also analyzed a related quantity called angoricity, which was previously believed to be a possible temperature-like quantity. However, they found that its value depended on the squeezing regime, ruling it out as a variable of state.

This research is published in Physical Review Letters.

–Marric Stephens

Marric Stephens is a freelance science writer based in Bristol, UK.


Subject Areas

Soft MatterStatistical Physics

Related Articles

Quantum Coherence Boosts Quantum Work
Atomic and Molecular Physics

Quantum Coherence Boosts Quantum Work

By manipulating a nitrogen vacancy’s single spin, researchers have shown that the more coherent the system is, the more work can be extracted from it. Read More »

Measuring Particle Diffusion with the Countoscope
Soft Matter

Measuring Particle Diffusion with the Countoscope

A new method for studying the behavior of multiparticle systems relies on a simple “head count” of particles in imaginary boxes. Read More »

Decoding Nature’s Hidden Messages
Biological Physics

Decoding Nature’s Hidden Messages

Bacteria, cells, swarms, and other organisms pluck information from noisy environments with extraordinarily high precision. Read More »

More Articles