Synopsis: Neutrino Probes of Long-Range Interactions

Researchers place new limits on hypothetical interactions between neutrinos and large electron populations on galactic scales.
Synopsis figure
IceCube/NSF

Searches for new fundamental interactions tend to concentrate on subatomic scales. Some theories, however, predict new interactions that—like gravity—can involve large numbers of particles acting over astronomical distances. A study by Mauricio Bustamante of the Niels Bohr Institute in Denmark and Sanjib Kumar Agarwalla of the Institute of Physics in Bhubaneswar, India, analyzes data from the IceCube Neutrino Observatory at the South Pole. The researchers looked for changes in neutrino oscillation behavior caused by long-range interactions with, for example, the 1057electrons in the Sun or the 1067electrons distributed throughout our Galaxy. The researchers find no such signatures, which allows them to place new constraints on these types of interactions.

Certain theories beyond the standard model predict long-range interaction between neutrinos and electrons mediated by a hypothetical particle called the Z´ vector boson. This proposed interaction is expected to be weak, but a large population of electrons within the interaction range could exert a collective Z´ force that affects neutrino oscillations. Previous studies failed to find evidence of such an effect in solar, reactor, and atmospheric neutrino data, placing limits on the strength of the Z´ interaction over solar system scales.

Agarwalla and Bustamante investigated Z´ interactions using the highest-energy neutrinos observed by IceCube. These neutrinos are extragalactic in origin, which means they are sensitive to the collective effect of electrons in the Milky Way and beyond. Bustamante and Agarwalla modeled the cumulative influence from these electrons and determined how strong the Z´ interaction could be without contradicting the IceCube data. From this analysis, they were able to place the first upper limits on the Z´ interaction strength over Galactic and extragalactic scales.

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Particles and FieldsAstrophysics

Previous Synopsis

Atomic and Molecular Physics

Freezing a 2D Ion Crystal

Read More »

Next Synopsis

Biological Physics

Sorting Blood Cells via Their Stiffness

Read More »

Related Articles

Viewpoint: Plot Thickens in Solar Opacity Debate
Plasma Physics

Viewpoint: Plot Thickens in Solar Opacity Debate

Experiments that replicate conditions in the Sun’s interior have found that the light absorption by certain elements doesn’t match expectations, raising questions about the accuracy of solar models. Read More »

Synopsis: How a Pentaquark is Put Together
Particles and Fields

Synopsis: How a Pentaquark is Put Together

New Large Hadron Collider data reveal that exotic quark quintets, discovered in 2016, are composites of quark-antiquark mesons and three-quark baryons.   Read More »

Viewpoint: Charm Reflects Poorly on Anticharm
Particles and Fields

Viewpoint: Charm Reflects Poorly on Anticharm

A study of particles containing charm quarks has uncovered a violation of so-called CP symmetry, which could help in understanding why matter dominates antimatter in the Universe.   Read More »

More Articles