Synopsis: Neutrino Probes of Long-Range Interactions

Researchers place new limits on hypothetical interactions between neutrinos and large electron populations on galactic scales.
Synopsis figure

Searches for new fundamental interactions tend to concentrate on subatomic scales. Some theories, however, predict new interactions that—like gravity—can involve large numbers of particles acting over astronomical distances. A study by Mauricio Bustamante of the Niels Bohr Institute in Denmark and Sanjib Kumar Agarwalla of the Institute of Physics in Bhubaneswar, India, analyzes data from the IceCube Neutrino Observatory at the South Pole. The researchers looked for changes in neutrino oscillation behavior caused by long-range interactions with, for example, the 1057electrons in the Sun or the 1067electrons distributed throughout our Galaxy. The researchers find no such signatures, which allows them to place new constraints on these types of interactions.

Certain theories beyond the standard model predict long-range interaction between neutrinos and electrons mediated by a hypothetical particle called the Z´ vector boson. This proposed interaction is expected to be weak, but a large population of electrons within the interaction range could exert a collective Z´ force that affects neutrino oscillations. Previous studies failed to find evidence of such an effect in solar, reactor, and atmospheric neutrino data, placing limits on the strength of the Z´ interaction over solar system scales.

Agarwalla and Bustamante investigated Z´ interactions using the highest-energy neutrinos observed by IceCube. These neutrinos are extragalactic in origin, which means they are sensitive to the collective effect of electrons in the Milky Way and beyond. Bustamante and Agarwalla modeled the cumulative influence from these electrons and determined how strong the Z´ interaction could be without contradicting the IceCube data. From this analysis, they were able to place the first upper limits on the Z´ interaction strength over Galactic and extragalactic scales.

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


More Features »


More Announcements »

Subject Areas

Particles and FieldsAstrophysics

Previous Synopsis

Atomic and Molecular Physics

Freezing a 2D Ion Crystal

Read More »

Next Synopsis

Biological Physics

Sorting Blood Cells via Their Stiffness

Read More »

Related Articles

Synopsis: Explaining Light Ion Production in High-Energy Collisions  
Particles and Fields

Synopsis: Explaining Light Ion Production in High-Energy Collisions  

Pions could catalyze reactions between protons and neutrons, allowing the stable production of deuterons in high-energy ion-ion collisions. Read More »

Synopsis: Ultrafast Oscilloscope for Ultrashort Electron Beam
Particles and Fields

Synopsis: Ultrafast Oscilloscope for Ultrashort Electron Beam

Driving an electron beam into a helical pattern with terahertz electromagnetic pulses allows researchers to measure the beam’s complete shape with femtosecond resolution. Read More »

Synopsis: Record LHC Haul Catches Double Meson Signal  
Particles and Fields

Synopsis: Record LHC Haul Catches Double Meson Signal  

A huge dataset recorded at the highest particle collision energy so-far observed resolves a puzzle by revealing two meson excited states. Read More »

More Articles