Synopsis: Perturbing Polymers with Salty Solutions

A new model explains the deformation of polymers in an ionic solution in terms of the concentration and distribution of ions.

Biological environments like the human body contain many examples of charged polymers swimming in a salty solution. Electrostatic interactions with the ions in the solution make these polymers bend and twist into various shapes, but experts do not understand the process in detail. Now, with a model that describes the relationship between a charged polymer’s shape and its environment, Sarah Innes-Gold of the University of California, Santa Barbara, and colleagues have shown that the spatial distribution of ions matters as much as their concentration.

The researchers based their model on simulations and experiments involving 100,000-atom strands of hyaluronic acid—a molecule of intermediate flexibility, and an important component of the connective tissue that supports the shape and function of biological cells. The team suspended individual polymer strands between a surface and a magnetic bead. Pulling on the bead using a magnetic field, Innes-Gold and colleagues measured the force required to stretch the polymers to a given length when immersed in a solution of varying ion concentration. They also simulated the measurement by modeling the polymer as 450 alternately charged and neutral segments interacting in a solution containing multiple types of ions.

Until now, models have predicted that a charged polymer would change shape continuously as the ion concentration is varied. The researchers found, however, that the polymer’s shape stays constant over a range of ion concentrations. They attribute this to a region of high ion concentration that wraps around the polymer like a jacket, protecting the polymer from ion-concentration changes. This “ion-jacket” model could, they say, be extended to explain how other polymers, such as RNA and proteins, change shape inside the body.

This research is published in Physical Review Letters.

–Sophia Chen

Sophia Chen is a freelance science writer based in Tucson, Arizona.


More Features »


More Announcements »

Subject Areas

Soft MatterBiological Physics

Previous Synopsis

Fluid Dynamics

Telling Whiskey from Whisky

Read More »

Next Synopsis

Related Articles

Synopsis: Collective Dynamics from Individual Random Walks
Biological Physics

Synopsis: Collective Dynamics from Individual Random Walks

The jerky, random motion of bacteria has now been reproduced using artificial microswimmers, yielding collective behaviors similar to those of real-world bacterial swarms.      Read More »

Synopsis: Simulations Unravel Fibers’ Twisted Topology

Synopsis: Simulations Unravel Fibers’ Twisted Topology

How an elastic filament deforms under stress has been quantified in simulations, with implications for the design of artificial muscles. Read More »

Synopsis: A Biological Cell As a Chemical Sensor
Biological Physics

Synopsis: A Biological Cell As a Chemical Sensor

A new theoretical model predicts a fundamental limit to how finely attuned a cell can be to its biochemical surroundings. Read More »

More Articles