Synopsis: Sound-Induced Bubbles for Drug Delivery

Ultrasound-induced bubble formation, which may benefit drug delivery and other medical procedures, is affected by transitions in surrounding lipid membranes.
Synopsis figure
S. Shrivastava and R. O. Cleveland, Phys. Rev. Materials (2019)

Ultrasound has long been an important tool for medical imaging. Recently, medical researchers have demonstrated that focused ultrasound waves can also improve the delivery of therapeutic agents such as drugs and genetic material. The intense waves trigger the rapid formation of bubbles that make cell membranes—as well as synthetic membranes enclosing drug-carrying vesicles—more permeable. However, the bubble-membrane interaction is not well understood. New experiments by Shamit Shrivastava and Robin Cleveland from the University of Oxford, UK, show that bubbles form more easily when membranes are at a “melting” transition.

Shrivastava and Cleveland performed ultrasound experiments on an aqueous solution containing a variety of lipid membranes, which are similar to cellular membranes. By varying the temperature of the solution, the duo investigated how the physical state of the membranes affected bubble formation. Fluorescent markers provided information about the molecular ordering within the membranes. When the researchers fired ultrasound pulses into the solution, bubbles formed near the membranes. The bubbles formed at lower acoustic energy when the temperature was near the point where the membranes were transitioning from a gel state to a more liquid-like state. The team also found that bubbles lasted longer when the membranes were in this liquid-like state.

The researchers explained these observed effects with a model that, unlike previous models, accounted for the entropy of the bubble surfaces. Future work may be able to use this model of the system’s thermodynamics to optimize drug-carrying vesicles with membranes that go through a phase transition at the desired moment during an ultrasound procedure.

This research is published in Physical Review Materials.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Features

More Features »

Announcements

More Announcements »

Subject Areas

AcousticsBiological Physics

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

A Step Toward Simulating Spin Glasses

Read More »

Related Articles

Finding a “Functional” Cure for HIV
Biological Physics

Finding a “Functional” Cure for HIV

A mathematical model could allow researchers to predict if and when the HIV virus will rebound after antiretroviral therapies stop. Read More »

Focus: Explaining the Ruffles of Lotus Leaves
Biological Physics

Focus: Explaining the Ruffles of Lotus Leaves

A new theory accurately predicts a wide range of leaf shapes and explains the differences between dry lotus leaves and those that grow on water. Read More »

Synopsis: Age Determines How a Human Aorta Stretches
Biological Physics

Synopsis: Age Determines How a Human Aorta Stretches

Younger aortas can expand 5 times more than older ones as fluid pumps through them, a finding that could help to design more successful aortic prostheses. Read More »

More Articles