Synopsis: A floating apothecary

Levitation technique provides a way to solidify pharmaceutical drugs in a highly soluble form.
Synopsis figure
C. J. Benmore and J. K. R. Weber, Phys. Rev. X (2011)

In an effort to make medicinal drugs that dissolve more quickly on delivery, scientists at Argonne National Laboratory in Illinois are using the technique of acoustic levitation to prepare molecular gels and amorphous solids. The technique could prove important for preparing several drugs that are known to be insoluble in crystalline form.

Acoustic levitation uses the pressure from intense sound waves to suspend an object. The technique is widely used in microgravity experiments, but also provides a way to solidify the atoms or molecules in a liquid without the potentially contaminating effects of a container. In a paper published in the inaugural issue of the open-access journal Physical Review X, Chris Benmore and Richard Weber show this containerless method allows them to supercool liquid forms of several over-the-counter and prescription drugs into amorphous forms.

Benmore and Weber are able to form the amorphous solids in two different ways. Drugs such as ibuprofen (an anti-inflammatory) and clofoctol (an antibiotic) were first dissolved in ethanol and then droplets of the solution were allowed to evaporate while suspended in the levitator. In an alternative method, which works for the antihistamine cinnarizine, the team starts with a solid form of the drug, melts it into droplets with a laser and then suspends these droplets as they cool.

For now, these experiments are “proof of principle,” as the effectiveness and shelf life of the drugs in their new structural forms remain to be explored. – Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

Materials Science

Next Synopsis

Astrophysics

Collisions on the sky

Read More »

Related Articles

Synopsis: Soft Biological Tissues Can Be Piezoelectric
Biological Physics

Synopsis: Soft Biological Tissues Can Be Piezoelectric

Artery walls, tendons, and heart valves can generate an electric voltage when squeezed—an effect that could be harnessed to diagnose important diseases. Read More »

Viewpoint: Phonon Heat Transport Near the Melting Point
Materials Science

Viewpoint: Phonon Heat Transport Near the Melting Point

Molecular dynamics simulations can fully describe phonon propagation in aluminum, which could enable accurate predictions of phonon thermal conductivity. Read More »

Viewpoint: The Heat in Antiferromagnetic Switching
Condensed Matter Physics

Viewpoint: The Heat in Antiferromagnetic Switching

New experiments suggest that heat might be responsible for the current-induced voltage signals measured in antiferromagnets, and not a rotation of the material’s spins as previously thought. Read More »

More Articles