Synopsis: A floating apothecary

Levitation technique provides a way to solidify pharmaceutical drugs in a highly soluble form.
Synopsis figure
C. J. Benmore and J. K. R. Weber, Phys. Rev. X (2011)

In an effort to make medicinal drugs that dissolve more quickly on delivery, scientists at Argonne National Laboratory in Illinois are using the technique of acoustic levitation to prepare molecular gels and amorphous solids. The technique could prove important for preparing several drugs that are known to be insoluble in crystalline form.

Acoustic levitation uses the pressure from intense sound waves to suspend an object. The technique is widely used in microgravity experiments, but also provides a way to solidify the atoms or molecules in a liquid without the potentially contaminating effects of a container. In a paper published in the inaugural issue of the open-access journal Physical Review X, Chris Benmore and Richard Weber show this containerless method allows them to supercool liquid forms of several over-the-counter and prescription drugs into amorphous forms.

Benmore and Weber are able to form the amorphous solids in two different ways. Drugs such as ibuprofen (an anti-inflammatory) and clofoctol (an antibiotic) were first dissolved in ethanol and then droplets of the solution were allowed to evaporate while suspended in the levitator. In an alternative method, which works for the antihistamine cinnarizine, the team starts with a solid form of the drug, melts it into droplets with a laser and then suspends these droplets as they cool.

For now, these experiments are “proof of principle,” as the effectiveness and shelf life of the drugs in their new structural forms remain to be explored. – Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

Materials Science

Next Synopsis

Astrophysics

Collisions on the sky

Read More »

Related Articles

Viewpoint: Constructing a Theory for Amorphous Solids
Materials Science

Viewpoint: Constructing a Theory for Amorphous Solids

Theorists are coming closer to a comprehensive description of the mechanics of solids with an amorphous structure, such as glass, cement, and compacted sand. Read More »

Viewpoint: Shaping Electron Bunches at the Femtosecond Level
Optics

Viewpoint: Shaping Electron Bunches at the Femtosecond Level

By crossing an electron beam with a terahertz light pulse, researchers are able to generate a tilted electron bunch, which could provide improved temporal resolution to electron microscopy. Read More »

Synopsis: To Eliminate Defects, Create a Bend
Soft Matter

Synopsis: To Eliminate Defects, Create a Bend

Nanoscale templates made from films of self-assembled polymers could be fabricated with fewer defects by putting the films on a curved surface. Read More »

More Articles