Synopsis: Optical Computing Under the Lens

A theoretical analysis quantifies the technical resources required to build a quantum computer based on photons.

Photons and linear optical components, such as mirrors and beam splitters, have been touted as a practical means to make a quantum computer. But what does it really take to build, block by block, such a linear optical quantum computer? Ying Li from the University of Oxford, UK, and colleagues now describe a theoretical analysis that puts numbers on the technical resources required to build such a machine.

Their work goes beyond previous analyses because it does two things simultaneously. One, it determines the overall number of components needed to build a useful linear optical quantum computing (LOQC) machine. And two, it establishes the maximum photon-loss and error rates that each component should have to enable fault-free computation. It also provides a comparison with computing schemes that use matter such as atoms and superconducting circuits, as opposed to photons, to encode quantum information.

The authors estimate that, for a photon-loss rate per component of one in a thousand and an error rate per component of one in a hundred thousand, the total number of components required is at least 5 orders of magnitude larger than for a matter-based processor. This is because photons interact with each other much more weakly than matter particles do. LOQC schemes overcome this limitation only at the cost of massively more complex circuits. While these results may be regarded as bad news for LOQC, they could guide researchers in the search for improved protocols for LOQC. In the end, hybrid architectures that combine photons and matter may turn out to be better than pure optical approaches.

This research is published in Physical Review X.

–Ana Lopes


More Features »


More Announcements »

Subject Areas

Quantum InformationQuantum Physics

Previous Synopsis

Biological Physics

Buckling in Bacteria Tails

Read More »

Next Synopsis

Related Articles

Synopsis: Quantum Sensing of Magnetic Fields
Quantum Physics

Synopsis: Quantum Sensing of Magnetic Fields

A new design for an atomic magnetometer utilizes so-called quantum nondemolition measurements to detect very weak magnetic-field signals. Read More »

Viewpoint: Seeing Scrambled Spins
Atomic and Molecular Physics

Viewpoint: Seeing Scrambled Spins

Two experimental groups have taken a step towards observing the “scrambling” of information that occurs as a many-body quantum system thermalizes.   Read More »

Viewpoint: Type-II Dirac Fermions Spotted
Quantum Information

Viewpoint: Type-II Dirac Fermions Spotted

Three separate groups report experimental evidence of novel type-II Dirac quasiparticles, suggesting possible applications in future quantum technology. Read More »

More Articles