Synopsis: Optical Computing Under the Lens

A theoretical analysis quantifies the technical resources required to build a quantum computer based on photons.

Photons and linear optical components, such as mirrors and beam splitters, have been touted as a practical means to make a quantum computer. But what does it really take to build, block by block, such a linear optical quantum computer? Ying Li from the University of Oxford, UK, and colleagues now describe a theoretical analysis that puts numbers on the technical resources required to build such a machine.

Their work goes beyond previous analyses because it does two things simultaneously. One, it determines the overall number of components needed to build a useful linear optical quantum computing (LOQC) machine. And two, it establishes the maximum photon-loss and error rates that each component should have to enable fault-free computation. It also provides a comparison with computing schemes that use matter such as atoms and superconducting circuits, as opposed to photons, to encode quantum information.

The authors estimate that, for a photon-loss rate per component of one in a thousand and an error rate per component of one in a hundred thousand, the total number of components required is at least 5 orders of magnitude larger than for a matter-based processor. This is because photons interact with each other much more weakly than matter particles do. LOQC schemes overcome this limitation only at the cost of massively more complex circuits. While these results may be regarded as bad news for LOQC, they could guide researchers in the search for improved protocols for LOQC. In the end, hybrid architectures that combine photons and matter may turn out to be better than pure optical approaches.

This research is published in Physical Review X.

–Ana Lopes


More Features »


More Announcements »

Subject Areas

Quantum InformationQuantum Physics

Previous Synopsis

Biological Physics

Buckling in Bacteria Tails

Read More »

Next Synopsis

Related Articles

Viewpoint: Linking Two Quantum Dots with Single Photons

Viewpoint: Linking Two Quantum Dots with Single Photons

Researchers have transferred quantum information from one quantum dot to another dot 5 m away using photonic qubits as the relay. Read More »

Synopsis: Speeding Up Battery Charging with Quantum Physics
Quantum Physics

Synopsis: Speeding Up Battery Charging with Quantum Physics

Calculations show that charging a set of batteries can go faster if the batteries are coupled together quantum mechanically. Read More »

Viewpoint: Photonic Hat Trick

Viewpoint: Photonic Hat Trick

Two independent groups have provided the first experimental demonstration of genuine three-photon interference. Read More »

More Articles