Synopsis: Trapping a Rydberg Ion

A trapped ion excited to a hydrogen-like Rydberg state shows promise for qubit applications.
Synopsis figure
G. Higgins et al., Phys. Rev. X (2017)

Quantum physicists want the best of both worlds. Rather than choose between different qubit technologies, they’d prefer combining two of the top candidates—trapped ions and hydrogen-like Rydberg atoms—into one. As a step towards fulfilling this goal, Markus Hennrich from Stockholm University and his colleagues have excited a single strontium ion to a Rydberg state. The analysis of the system’s properties showed that exciting to one of the ion’s symmetric electronic states can mitigate unwanted electric field effects.

Trapped ions are currently among the head of the pack of possible qubit technologies, thanks to the isolated trap environment that allows long qubit lifetimes and low error rates. However, coupling qubits usually involves controlling the motion of all the ions, which poses a problem for large qubit ensembles. A Rydberg atom, by contrast, can have a long-range coupling interaction with its neighbors, owing to the large orbit of its single, highly excited outer electron. The challenge has been finding a way to effectively confine Rydberg atoms.

One possible solution is to excite trapped ions into Rydberg states. But the concern has been that the strong electric fields in an ion trap will shift or ionize the nearly unbound outer electron of the Rydberg state. Hennrich and colleagues explored the effect of an electric field on a single trapped strontium ion. To reach the desired Rydberg state, the team utilized two-photon excitation with counterpropagating laser beams, thus disturbing the ion less than in previous Rydberg ion experiments with single-photon excitation. The results showed that when the ion is excited into a spherically symmetric S orbital, the trap’s quadrupole field does not alter the ion’s electronic structure.

This research is published in Physical Review X.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationAtomic and Molecular Physics

Next Synopsis

Related Articles

Viewpoint: Sharpening the Features of Optical Lattices
Atomic and Molecular Physics

Viewpoint: Sharpening the Features of Optical Lattices

Lasers trap cold atoms in a lattice of potential barriers much narrower than the lasers’ wavelength. Read More »

Focus: <i>Video</i>—Condensate Duo Puts on a Show
Atomic and Molecular Physics

Focus: Video—Condensate Duo Puts on a Show

Simulations of the mixing of two oppositely polarized Bose-Einstein condensates produce fingering patterns that look like those of classical fluids. Read More »

Viewpoint: Atoms Oscillate Collectively in Large Optical Lattice
Atomic and Molecular Physics

Viewpoint: Atoms Oscillate Collectively in Large Optical Lattice

By coupling atoms in an optical lattice to a thin elastic membrane, researchers have demonstrated a dynamic instability that is evidence of collective atomic motion. Read More »

More Articles