Synopsis: The More the Merrier…and Heavier

Experimentalists make considerable progress towards sustained production of superheavy elements.

Where does the periodic table end? Extending the periodic table to the artificially synthesized superheavy elements is one of the most fascinating avenues of nuclear research, offering sensitive tests of theories of nuclear physics and chemistry (see 9 April 2010 Viewpoint). The difficulties to overcome are not only that the experiments last several months, but also that at the end, they typically produce few, of the order of two or three, superheavy nuclei.

Writing in Physical Review Letters, Yuri Oganessian at the Joint Institute for Nuclear Research, Russia, and collaborators report on results from the bombardment of a radioactive americum-243 target by calcium-48 projectiles. After a run lasting four months, they have produced twenty-two nuclei of element 115. The high yield was achieved by optimizing beam energy and detection performance as well as by increasing beam dose. This is an improvement of more than twice the previous yields of such nuclei. Apart from the technical feat of the substantially enhanced production of this superheavy nucleus, the results from this experiment provide a wealth of information on how such superheavy elements decay, with consequences for nuclear structure physics and stability in general. – Abhishek Agarwal


Announcements

More Announcements »

Subject Areas

Nuclear Physics

Previous Synopsis

String Theory

Out of Bounds

Read More »

Next Synopsis

Materials Science

Lowered Resistance Under Pressure

Read More »

Related Articles

Viewpoint: Can Four Neutrons Tango?
Nuclear Physics

Viewpoint: Can Four Neutrons Tango?

Evidence that the four-neutron system known as the tetraneutron exists as a resonance has been uncovered in an experiment at the RIKEN Radioactive Ion Beam Factory. Read More »

Synopsis: Throwing Nuclei in the Ring
Nuclear Physics

Synopsis: Throwing Nuclei in the Ring

By trapping nuclei in a particle storage ring, researchers characterize previously inaccessible nuclear reactions that take place in stellar explosions. Read More »

Viewpoint: Cavity with Iron Nuclei Slows Down X Rays
Optics

Viewpoint: Cavity with Iron Nuclei Slows Down X Rays

Slow light effects have been measured for x rays using a cavity filled with iron nuclei, where the speed of light was reduced by a factor of 10,000. Read More »

More Articles