Synopsis

Scattering from the Quantum Vacuum  

Physics 10, s54
Polarized gamma rays could be used to measure how gamma-ray photons scatter off the virtual particles that make up the quantum vacuum.
James Koga/National Institutes for Quantum and Radiological Science and Technology

According to quantum theory, the vacuum swarms with particles that pop in and out of existence. While they are virtual, these particles are at the root of observable quantum phenomena like the Casimir effect. James Koga and Takehito Hayakawa at the National Institutes for Quantum and Radiological Science and Technology, Japan, have now detailed a way to measure with unprecedented accuracy a difficult-to-isolate quantum-vacuum effect known as Delbrück scattering. The approach may allow sensitive tests of the theory of quantum electrodynamics (QED).

Delbrück scattering has analogies with the better-known form of scattering responsible for the color of the sky—Rayleigh scattering. Rayleigh scattering arises from the interaction of photons with bound electric charges in the scattering particles. Delbrück scattering instead derives from the interaction of photons with virtual electron-positron pairs in the presence of the Coulomb field of an atomic nucleus. First observed in the 1970s, the effect remains hard to characterize because it occurs in combination with four other types of scattering, including Rayleigh.

Koga and Hayakawa propose a method to isolate and measure Delbrück scattering. The key to their solution is the use of polarized gamma rays. According to their calculations, an appropriate choice of scattering angle, photon polarization, and photon energy would make Delbrück scattering 2 orders of magnitude stronger than that of the other three forms of scattering. Assuming the use of tin as the scattering material and a high-flux gamma-ray source like ELI-NP (Extreme Light Infrastructure - Nuclear Physics)—a facility under construction in Romania—the team predicts that, using data collected over 76 days, the method could double the accuracy achieved in previous experiments.

This research is published in Physical Review Letters.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


Subject Areas

Quantum Physics

Related Articles

Quantum Thermal Transistor Amplifies Heat Currents
Electronics

Quantum Thermal Transistor Amplifies Heat Currents

A three-qubit transistor design offers a way to manipulate the system’s heat flow by hitting one of the qubits with a laser.   Read More »

Hiding Secrets Using Quantum Entanglement
Quantum Information

Hiding Secrets Using Quantum Entanglement

Three experiments demonstrate the key elements of a quantum cryptographic scheme that predictions indicate should be unhackable, bringing the promise of quantum encryption technologies a step closer to reality. Read More »

Taking Smooth Steps Toward Equilibrium
Quantum Physics

Taking Smooth Steps Toward Equilibrium

By combining continuous and discrete theoretical approaches, researchers show how to plot an optimal path from one nonequilibrium quantum state to another. Read More »

More Articles