Solving Many-Body Problems with a Quantum Microscope

Physics 10, s65
A microscope that images the momenta of atoms in a Bose-Einstein condensate could solve quantum many-body problems.
S. S. Hodgman et al., Phys. Rev. Lett. (2017)

Elucidating the quantum behavior of large ensembles of interacting particles typically requires knowledge of the system’s many-body wave function. When the ensemble contains a few million atoms—typical for Bose-Einstein Condensates (BECs)—this is no mean feat. Sean Hodgman, from the Australian National University, and colleagues have now demonstrated a way to tackle this so-called quantum many-body problem that doesn’t require the wave function to be known. Their method instead determines all the parameters needed to characterize the system from measurements of the correlations between the momenta of individual atoms in the ensemble.

The researchers’ method involves recording the momenta of scattered atoms after two ensembles of BEC atoms are collided with one another. The atoms’ momenta obtained from such recordings are then used to calculate the correlations between all pairs and triplets of atoms in the scattered atom cloud. According to the group’s theoretical derivations and experimental measurements, these correlations are sufficient to solve the many-body problem for this system.

The team demonstrated their technique by smashing together two BECs, collectively containing one million helium atoms. Recording each atom’s position at various times after the collision, they reconstructed the atoms’ momenta and calculated the momentum correlation functions up to third order (three-atom correlations). Since the setup can map the atoms’ momenta in three dimensions, it can be regarded as a quantum many-body momentum microscope. Such a microscope could make it easier to study important many-body effects, including many-body localization phenomena and glassy behavior in highly disordered systems.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Contributing Editor for Physics.

Subject Areas

Quantum PhysicsAtomic and Molecular Physics

Related Articles

Might There Be No Quantum Gravity After All?
Quantum Physics

Might There Be No Quantum Gravity After All?

A proposed model unites quantum theory with classical gravity by assuming that states evolve in a probabilistic way, like a game of chance. Read More »

Midcircuit Operations in Atomic Arrays
Atomic and Molecular Physics

Midcircuit Operations in Atomic Arrays

Three research groups have exploited the nuclear spins of ytterbium-171 to manipulate qubits before they are read out—an approach that could lead to efficient error-correction schemes for trapped-atom computing platforms. Read More »

Uncertainty beyond the Uncertainty Principle
Quantum Physics

Uncertainty beyond the Uncertainty Principle

According to a new extension to an old theory, a particle’s position cannot be measured precisely even if its momentum is not measured simultaneously. Read More »

More Articles