Synopsis

Earth As a Neutrino Source

Physics 13, s10
The Borexino experiment has doubled its data on neutrinos generated inside Earth, providing new constraints on geological models of the mantle.
Borexino Collaboration

Neutrinos bombard us from all directions, including from Earth’s interior, where decays of radioactive elements, such as uranium and thorium, produce neutrinos. The Borexino experiment, located in Gran Sasso National Laboratory in Italy, has now measured a total of 53 of these “geoneutrinos,” more than doubling the project’s previous count (see 7 August 2015 Focus). The new results better pinpoint the origin of the observed geoneutrino flux, showing that roughly half of the detected particles originate from Earth’s mantle and that the rest come from the crust.

The Borexino experiment consists of an 18-m-wide sphere containing 280 tons of liquid scintillator that is surrounded by photodetectors. Incoming neutrinos can—on rare occasions—interact with a nucleus in the scintillator, producing a detectable light signal. Originally built to study solar neutrinos, the detector also serves as a geoneutrino observatory. Previous results confirmed that our planet emits about 1025 geoneutrinos per second (roughly a trillionth of the neutrinos that the Sun puts out).

For their new geoneutrino study, the Borexino Collaboration analyzed data from 2007 to 2019, utilizing improved techniques for distinguishing neutrino events from background signals caused by other particles, like muons. They also estimated the number of background neutrinos coming from nuclear reactors. From their resulting geoneutrino counts, the team calculated that the expected energy from the radioactive decays that produce the particles accounts for more than half of Earth’s total heat output (47,000 GW). This estimated heating budget favors geological models that predict—relative to other models—a high concentration of radioactive elements in the mantle.

This research is published in Physical Review D.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Subject Areas

Nuclear PhysicsGeophysics

Related Articles

Lanthanum Less Abundant Than Previously Thought
Nuclear Physics

Lanthanum Less Abundant Than Previously Thought

Measurements related to the production of lanthanum in stars where elements are thought to form via the “i process” indicate that less of the element is produced than models predict. Read More »

Making Neutron-Deficient Nuclei
Nuclear Physics

Making Neutron-Deficient Nuclei

Adding neutrinos to an existing nucleosynthesis recipe can account for the puzzling existence of neutron-deficient heavy nuclei. Read More »

Shedding Light on the Thorium-229 Nuclear Clock Isomer
Nuclear Physics

Shedding Light on the Thorium-229 Nuclear Clock Isomer

Researchers use a laser to excite and precisely measure a long-sought exotic nuclear state, paving the way for precise timekeeping and ultrasensitive quantum sensing. Read More »

More Articles