Synopsis

Finding Exoplanets with Quantum Imaging

Physics 14, s122
Treating stars and planets as quantum objects could make it easier for astronomers to directly image exoplanets.
Z. Huang and C. Lupo [1]

Of the approximately 4500 known extrasolar planets, only about 1% were found by imaging the planets directly. The reason for the low direct-detection rate is that the dim light scattered from an exoplanet is hard to recognize amid the glare of the planet’s parent star. Now, Zixin Huang at Macquarie University, Australia, and Cosmo Lupo at the University of Sheffield, UK, predict that quantum imaging could significantly improve the probability of directly detecting an exoplanet [1]. They also show that the ultimate sensitivity limit for this task is already reachable for two currently available techniques—one based on interferometry, the other on the decomposition of light from the image from a star into different spatial modes (see Viewpoint: Unlocking the Hidden Information in Starlight).

Huang and Lupo approach the task of finding planets by treating the problem as one of quantum state discrimination, where the two quantum states—“star plus planet” and “star only”—are linked to the spatial distribution of the detected photons. They find that the probability of correctly discriminating between these states depends on the angular separation between the star and the planet, the brightness ratio of the two objects, and the number of photons collected by the telescope.

The researchers predict that, as these variables change, the “discrimination-error” probability of their quantum approach scales differently from the classical approach. They find that only quantum-imaging techniques reach the fundamental error-probability limit. Thus, compared to current methods, quantum techniques should be able to detect exoplanets that are dimmer, closer to their stars, or both.

–Marric Stephens

Marric Stephens is a Corresponding Editor for Physics Magazine based in Bristol, UK.

References

  1. Z. Huang and C. Lupo, “Quantum hypothesis testing for exoplanet detection,” Phys. Rev. Lett. 127, 130502 (2021).

Subject Areas

Quantum PhysicsAstrophysicsOptics

Related Articles

Spin Control in a Levitating Diamond
Magnetism

Spin Control in a Levitating Diamond

By manipulating and detecting nuclear spins in a tiny floating diamond, scientists have reported a record-long spin coherence time for a levitated system. Read More »

Chiral Response of Achiral Meta-Atoms
Condensed Matter Physics

Chiral Response of Achiral Meta-Atoms

Contrary to conventional wisdom, a lattice of engineered nanoparticles called meta-atoms can have a chiral optical response even when each meta-atom is not chiral. Read More »

Dark Matter at Cosmic Dawn
Cosmology

Dark Matter at Cosmic Dawn

Low-frequency radio observations could allow researchers to distinguish among several dark matter models, thanks to dark matter’s influence on the early Universe. Read More »

More Articles