Synopsis

Shielding Qubits with Chemistry

Physics 15, s116
The spin state of molecular qubits can be made more stable by changing the chemical environment in which the qubits sit.
D. Laorenza/MIT

Qubits made from molecules are versatile quantum-technology systems that can be chemically engineered for a wide variety of applications. Now David Awschalom from the University of Chicago and colleagues have identified a way of manipulating the spin states of the molecular qubits by placing them in an asymmetric chemical environment [1]. The resulting spin states are more stable against noise from fluctuating magnetic fields than those in symmetric environments.

The molecular qubit used by the team consists of a chromium atom—where the spin is localized—surrounded by chemical groups (or “ligands”) that generate a light-responsive electronic structure in the atom’s spin state. As such, the qubit’s spin can be controlled and read out with light, a desirable capability that has been widely investigated in other qubit systems (see Synopsis: Vetting Neutral Nitrogen Vacancies). But molecular qubits are unique in that researchers can insert them into different chemical settings. “A key advantage of these molecular systems is that the qubit is self-contained within a molecule and so can be deployed in different host environments,” Awschalom explains.

In previous experiments, the molecular qubits were housed within a crystal array of host molecules that had the same structure as the qubits. Awschalom and colleagues instead used host molecules with a slightly different structure, resulting in an asymmetric environment around each qubit. The asymmetry made the qubits less sensitive to the magnetic fields coming from nearby nuclear spins. The coherence time—how long the qubits stay in a spin state—was measured to be 10 µs, compared to 2 µs for molecular qubits in a symmetric host environment. Awschalom says these qubits might find use in detecting electric fields in biological samples and in other noisy settings.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics Magazine based in Lyon, France.

References

  1. S. L. Bayliss et al., “Enhancing spin coherence in optically addressable molecular qubits through host-matrix control,” Phys. Rev. X 12, 031028 (2022).

Subject Areas

Quantum Information

Related Articles

Erbium Ions Apply for Quantum Repeater Job
Quantum Information

Erbium Ions Apply for Quantum Repeater Job

Experiments with erbium ions show that they can be used to create entangled photons in the telecom band—an important step in building quantum repeaters. Read More »

Microsoft’s Claim of a Topological Qubit Faces Tough Questions
Quantum Information

Microsoft’s Claim of a Topological Qubit Faces Tough Questions

Microsoft’s announcement of achieving a milestone in a potentially transformative approach to quantum computing is met with skepticism by researchers attending the APS Global Summit. Read More »

Quantum Milestones, 1993: Teleportation Is Not Science Fiction
Quantum Physics

Quantum Milestones, 1993: Teleportation Is Not Science Fiction

Theorists proposed an idea they called quantum teleportation—a means of transferring the identity of one particle to another over some distance.  Read More »

More Articles