Synopsis

Erasure Qubits for Abridged Error Correction

Physics 17, s35
Researchers have realized a recently proposed qubit in which the errors mostly involve erasure of the qubit state, an advance that could help simplify the architecture of fault-tolerant quantum computers.
H. Levine et al. [1]; APS/Carin Cain

To operate reliably a quantum computer needs to correct the errors introduced into the system by noise in its hardware. Error-correction approaches typically use “logical” qubits, which are qubits made up of as many as a few thousand “physical” qubits. Logical qubits are much less error prone than physical qubits, but the hardware overhead complicates the realization of fault-tolerant quantum computers based on this approach. Now a team led by Harry Levine and Oskar Painter of the Amazon Web Services Center for Quantum Computing in California has demonstrated a new qubit design with built-in error-detection ability [1]. Painter says this qubit could serve as an alternative building block for error-correcting schemes, substantially reducing complexity.

The demonstrated qubit is an “erasure” qubit, one in which the most likely error type involves the loss, or erasure, of the qubit’s state [2]. This error is easier to spot and correct for than other qubit errors, such as those that flip the qubit’s state. Researchers have previously demonstrated erasure qubits made from single atoms. The new study makes the leap to transmons, the superconducting qubit used in the quantum processors developed by Google and IBM.

The erasure qubit of Levine, Painter, and colleagues contains three transmons. Two of the transmons are coupled together and store a qubit’s worth of information in a single, shared microwave photon. The third transmon reveals the loss of the photon—the erasure—through a shift in its operating frequency. The researchers show that in this qubit erasure errors are the dominant error type and can be detected in real time. The researchers now plan to use their new qubit to build logic gates and error-correcting circuits.

–Matteo Rini

Matteo Rini is the Editor of Physics Magazine.

References

  1. H. Levine et al., “Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons,” Phys. Rev. X 14, 011051 (2024).
  2. A. Kubica et al., “Erasure qubits: Overcoming the T1 limit in superconducting circuits,” Phys. Rev. X 13 (2023).

Subject Areas

Quantum PhysicsQuantum Information

Related Articles

Quantum Radar over Long Distances
Quantum Information

Quantum Radar over Long Distances

A proposed remote-sensing scheme could potentially probe targets hundreds of kilometers away and uses one of the strangest quantum properties of light. Read More »

Enter the Mechanical Qubit
Quantum Information

Enter the Mechanical Qubit

The demonstration of the first fully functioning mechanical qubit offers a new platform for quantum information processing and could lead to ultraprecise gravity sensors. Read More »

Spin Control in a Levitating Diamond
Magnetism

Spin Control in a Levitating Diamond

By manipulating and detecting nuclear spins in a tiny floating diamond, scientists have reported a record-long spin coherence time for a levitated system. Read More »

More Articles