Synopsis

Linked in

Physics 4, s76
A link in a quantum network is built from a hybrid atomic system, connected by fiber optics.
M. Lettner et al., Phys. Rev. Lett. (2011)

Networks provide an essential tool for many communication and computational tasks by connecting different regions of space to allow remote systems to talk to one another. In a quantum network, a link represents shared entanglement between remote systems. Establishing such a link involves the creation, distribution, storage, and retrieval of entanglement.

Writing in Physical Review Letters, Matthias Lettner and colleagues from the Max Planck Institute for Quantum Optics in Garching, Germany, report they are able to create such a link with a notably high fidelity of 95%. (Fidelity characterizes the reproducibility of preparing a quantum state.) They entangle two systems that sit in different laboratories located 13 meters apart. In one laboratory, they send a laser pulse onto a single Rubidium atom inside an optical cavity to create a photon that is entangled with the atom. The photon is allowed to depart the cavity to travel through 30 meters of optical fiber to another laboratory. There, a Bose-Einstein condensate (BEC) of Rubidium atoms captures the photon and stores it in the multi-atom wave function, creating an entangled state between the single atom and the atomic ensemble. Two final steps map the atom-BEC entanglement onto photon-photon entanglement: retrieving the stored photon from the BEC and, meanwhile, producing a second photon from the single atom.

This hybrid system, which demonstrates the creation, distribution, storage, and retrieval of entanglement across remote locations, is an essential link within, and a step towards, a real-world quantum network. – Sonja Grondalski


Subject Areas

Atomic and Molecular PhysicsQuantum Information

Related Articles

Quantum Chip Cuts Unintended Signals
Quantum Information

Quantum Chip Cuts Unintended Signals

A 25-qubit quantum processor architecture reduces the stray signals that can cause errors and is suitable for scaling up. Read More »

Preparing Entangled States Efficiently
Quantum Information

Preparing Entangled States Efficiently

A new method for preparing certain states on a quantum computer is predicted to take the same time regardless of the system size. Read More »

New Quantum Effect in Textbook Chemistry Law
Quantum Information

New Quantum Effect in Textbook Chemistry Law

The observation of quantum modifications to a well-known chemical law could lead to performance improvements for quantum information storage. Read More »

More Articles