Synopsis

Robust Networks

Physics 5, s138
A network model reveals optimal configurations for withstanding random failure or targeted attacks.
T. P. Peixoto and S. Bornholdt, Phys. Rev. Lett. (2012)

As man-made networks, from Facebook to the power grid, are increasingly gaining importance, it is crucial that we construct them to be as reliable as possible. In a paper in Physical Review Letters, Tiago Peixoto and Stefan Bornholdt at the University of Bremen, Germany, show how we could build a large-scale network that stands up best to random failure or intentional attacks.

The authors analyze the conditions under which, in a highly interdependent network, a problem in a small section could expand to the entire network and lead to widespread failure. To do this, they borrow the tools of percolation theory (which describes the movement of liquids through porous media) and use it to develop a model that describes networks as ensembles of discrete “blocks” of connected and interdependent nodes. With this model, they determine the network topologies most robust against random failure (which can occur at any node) and those that are robust against targeted attacks (which are directed at the most connected nodes).

The research shows that networks with a highly linked core connected to a periphery are most robust to random failures. This may explain why similar core-periphery topologies have emerged in many real systems, from the internet to gene-regulation networks. Instead, randomly connected, noncentralized topologies turn out to be the best protection against targeted attacks. – Sami Mitra


Subject Areas

Interdisciplinary PhysicsComplex Systems

Related Articles

“Off Switch” Makes Explosives Safer
Industrial Physics

“Off Switch” Makes Explosives Safer

An explosive material fabricated with a highly porous structure is inactive but is easily “switched on” when filled with water. Read More »

How a City’s Highway Geometry Evolves
Interdisciplinary Physics

How a City’s Highway Geometry Evolves

Researchers have identified the traffic thresholds at which cities build urban freeways and ring roads, which could help city administrators refine infrastructure plans. Read More »

Stringy Particles in Complex Plasmas
Plasma Physics

Stringy Particles in Complex Plasmas

Simulations and an experiment aboard the International Space Station show that changes in the system’s repulsive forces are behind the alignment of particles embedded in an electrified plasma. Read More »

More Articles