Synopsis

Training Catalytic Atoms to Stop Fidgeting

Physics 5, s80
Single atoms deposited on an iron oxide surface provide a valuable model system for studying catalysis.
Courtesy of Z. Novotný and M. Schmid/Vienna University of Technology

Much of modern industrial chemistry relies on catalysts to drive useful reactions toward desired end products and increased yields. What makes these catalysts successful becomes clearer only with the ability to identify and analyze individual atoms on oxide surfaces, so having model systems to explore the chemistry and physics of surfaces is crucial. In a paper in Physical Review Letters, Zbynĕk Novotný and colleagues at the Vienna University of Technology, Austria, report their development of thermally stable arrays of gold atoms on iron oxide that may be ideal for answering key questions in catalysis.

Previous work has hinted at a size effect in catalysis: as clusters of catalytic metal atoms get smaller and smaller, they become more chemically active. Taken to the limit, individual atoms may be the most active, but studying this behavior demands a stable, well-characterized combination of atom and surface. Typically, however, gold atoms are highly mobile on these kinds of substrates and researchers have to cool them to cryogenic temperatures to hold them steady, making investigation under realistic conditions difficult.

Novotný et al. find that gold atoms sit comfortably on single crystals of Fe3O4 (magnetite) cut to present a particular surface structure at temperatures as high as 400C. Owing to charge ordering in the iron oxide, the surface acquires a lateral electronic structure that may stabilize the gold atoms, along with several other adsorbed atoms studied by the researchers. This suggests that the team has discovered a model system that may be universally applicable to detailed investigations of small cluster catalysis under actual reaction conditions. – David Voss


Subject Areas

NanophysicsChemical PhysicsMaterials Science

Related Articles

Designer Disorder in a Crystalline Conflict Zone
Materials Science

Designer Disorder in a Crystalline Conflict Zone

Inducing correlated disorder into a crystalline material could offer a way to tune the material’s phonon properties and thermal conductivity. Read More »

Electron’s Orbital Motion Dominates a Spintronic Effect
Condensed Matter Physics

Electron’s Orbital Motion Dominates a Spintronic Effect

In a two-dimensional material, the orbital motion of electrons, rather than their spin, is the dominant contribution to an effect harnessed by spintronic devices. Read More »

Electrons and Water Molecules Form a Pulsating Cluster
Materials Science

Electrons and Water Molecules Form a Pulsating Cluster

In water, single electrons can cluster with water molecules to form a quasiparticle that oscillates in size, a behavior that could influence the equilibration speed of chemical reactions in the system.   Read More »

More Articles