Synopsis

Heavy Quark Model Lands on Solid Footing

Physics 6, s116
A new measurement of bottom-quark hadron lifetimes resolves a theoretical mystery.
CERN/LHCb

To make sense of the gigabytes of data coming out of the Large Hadron Collider, physicists need good theoretical models of how quarks and gluons form the larger particles called hadrons. For hadrons containing a relatively massive b (or bottom) quark, an early approach—the free quark model—doesn’t work well, so researchers developed a “heavy quark expansion” model that recognizes interactions among the quarks. In a paper in Physical Review Letters, the LHCb Collaboration reports high-energy collision data that lend substantial support to the heavy quark expansion theory, which has become the best approach for some important calculations.

One test of this theory is to look at the lifetimes of two very different creatures: the Λb hadron (comprising an up, down, and bottom quark) and the anti-B meson (comprising a down antiquark and a bottom quark). According to the heavy quark expansion, the lifetimes of the two particles should be dominated by the b quark and thus equal to within a few percent. However, data emerging from LHC’s predecessor, LEP, indicated that Λb had a shorter lifespan than the B meson by a large margin.

Better data are now reported by the LHCb researchers, who studied Λb and anti-B decays from 7 tera-electron-volt proton-proton collisions. They find a ratio of lifetimes of 0.976, or equal within a few percent, as predicted by the heavy quark expansion. Moreover, the prediction was obtained without any corrections to the model, giving support to this treatment of quarks within hadrons. – David Voss


Subject Areas

Particles and Fields

Related Articles

Close Passes Give Atoms Tiny Quantum Kicks  
Atomic and Molecular Physics

Close Passes Give Atoms Tiny Quantum Kicks  

A new technique in which atoms move slowly through a diffraction grating lets researchers measure the tiny Casimir-Polder interaction, a force that arises from quantum vacuum fluctuations. Read More »

Measuring the Neutron Lifetime with Record-Breaking Precision
Particles and Fields

Measuring the Neutron Lifetime with Record-Breaking Precision

An improved version of a “bottle” experiment lets researchers lower the uncertainty on this important parameter—but a tantalizing discrepancy remains. Read More »

Unraveling <i>D</i>-Meson Mixing
Particles and Fields

Unraveling D-Meson Mixing

The observation of neutral D mesons oscillating into their antiparticle partners provides constraints on new heavy particles that can’t be directly produced by high-energy colliders.     Read More »

More Articles