Plant Power

Physics 6, s159
A proposal for more efficient solar cells is inspired by the light-harvesting molecules in plants.
C. Creatore et al., Phys. Rev. Lett. (2013)

Taking a cue from how plants convert sunlight into useful energy, researchers have designed a model system consisting of three molecules exposed to light. They show that quantum-mechanical effects can significantly boost the photocurrent the molecules can generate compared to the case in which only classical effects come into play. The theoretical scheme, which is presented in Physical Review Letters, could be the basis for designing more efficient solar cells.

When light shines on a photocurrent-generating material, its energy is absorbed by electrons, which become unbound and can move freely. These free electrons can then contribute to an electrical current that does work. But the newly unbound electrons can also quickly “recombine” elsewhere, which is what limits the efficiency of most photoelectric materials.

The light-harvesting molecules in plants, on the other hand, can, under certain conditions, convert photons to electrons with near perfect efficiency, and experimental evidence suggests this high efficiency may be the result of quantum-mechanical effects. Celestino Creatore and his colleagues at the University of Cambridge in the UK considered how quantum effects could enhance the photocurrent in a simple system inspired by the pigment-protein molecules found in plants: two “donor” molecules, each of which has an energy level that absorbs photons, flanked by an “acceptor” molecule that can transfer the excited electron away. Creatore et al. have calculated that quantum effects can mix the two donor molecules when there is a dipole interaction between them, creating two new states: one very efficient absorber, and one “dark level,” which blocks the path by which the electrons can recombine. The current generated by exposing this new configuration to light can be 35% higher than expected from classical physics alone. – Jessica Thomas

Subject Areas

Energy Research

Related Articles

Boosting Inertial-Confinement-Fusion Yield with Magnetized Fuel

Boosting Inertial-Confinement-Fusion Yield with Magnetized Fuel

Building on a decade of advances in the understanding of neutron production and hot-spot physics, researchers at the National Ignition Facility are pursuing magnetized fusion fuel as a potentially disruptive way to boost the performance of laser-driven implosion. Read More »

Harvesting Energy from Falling Droplets

Harvesting Energy from Falling Droplets

A clever coupling of triboelectric charging and the hydrophobic effect leads to a remarkably efficient electrical nanogenerator. Read More »

City Sizes May Affect Blackout Probabilities
Complex Systems

City Sizes May Affect Blackout Probabilities

The probabilities of electricity blackouts may be influenced by the sizes of cities more than by the details of power grids. Read More »

More Articles