Synopsis

Hydrogen Bonding Comes to the Rescue

Physics 9, s110
Hydrogen bonding may safeguard biomolecules against the damaging effects of UV light.
Daniel Horke, Center for Free-Electron Laser Science

When light is absorbed by a biomolecule, it may initiate useful chemical reactions, or cause irreversible damage. Which process dominates depends not only on the molecule, but also on the network of hydrogen bonds that links it to the surrounding solvent or connects different submolecular groups. Russell Minns at the University of Southampton, UK, and coworkers from the Center for Free-Electron Laser Science in Hamburg, Germany, and the Central Laser Facility in Didcot, UK, have now elucidated the role of hydrogen bonding by comparing the effects of light absorption in a hydrogen-bonded molecular complex with those in isolated molecules.

The authors studied the ammonia dimer, two ammonia ( NH3) molecules held together by a hydrogen bond. The dimer is an important model for larger biological systems because it contains the same hydrogen bond that ties DNA nucleobases together, linking an NH group and a nitrogen atom. The team excited the dimer with UV laser pulses and, using visible-light pulses, measured the dimer’s photoelectron spectrum at different times after absorption. From these, they could infer the molecule's changing structure with femtosecond resolution.

The researchers compared the response of an isolated ammonia molecule with that of the dimer. While the individual molecule breaks apart by losing a hydrogen atom, the dimer remains intact and returns to its original state. This occurs because, instead of dissociating, the molecule undergoes a reversible chemical reaction: it transfers one proton along the hydrogen bond before relaxing to its ground state. A single hydrogen bond can thus stabilize the molecule against photodissociation. The authors suggest that, for biomolecules, this could be a common mechanism for protection against harmful UV light.

This research is published in Physical Review Letters.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


Subject Areas

Chemical PhysicsOptics

Related Articles

Microwaves Can Suppress Chemical Reactions
Chemical Physics

Microwaves Can Suppress Chemical Reactions

The heating effect of microwaves has long been used to accelerate reactions. A new experiment shows that microwaves can also excite molecules into a less reactive state. Read More »

Birefringent Nanocubes Give Light a Circular Boost
Optics

Birefringent Nanocubes Give Light a Circular Boost

An achiral metasurface selectively transmits two beams of opposite chirality. Read More »

Gauging the Temperature Sensitivity of a Nuclear Clock
Atomic and Molecular Physics

Gauging the Temperature Sensitivity of a Nuclear Clock

Researchers have characterized the temperature-induced frequency shifts of a thorium-229 nuclear transition—an important step in establishing thorium clocks as next-generation frequency standards. Read More »

More Articles