Synopsis

Ten Photons in a Tangle

Physics 9, s124
An entangled polarization state of ten photons sets a new record for multiphoton entanglement.
X.-L. Wang et al., Phys. Rev. Lett. (2016)

Quantum computing requires multiple qubits entangled together. So far, only a handful of qubits have been coupled together successfully. A new experiment raises the bar with the entangling of ten photons, two more than the previous photon record. While still a ways off from what’s needed to make quantum computers competitive with classical ones, the entanglement of this many photons might be sufficient for certain quantum error correction codes and teleportation experiments.

Entangling photons typically relies on a nonlinear crystal, which converts a small fraction of incoming photons into a pair of entangled photons. In the case of the 𝛽-barium borate (BBO) crystal, the two photons have opposite polarizations—one being horizontal, the other vertical—and they are emitted in different directions. Researchers therefore use a variety of optical devices to collect the photon pair, which can then be entangled with pairs from other BBO crystals.

Previous multiphoton entanglement experiments had relatively low collection efficiencies of around 40%. Xi-Lin Wang from the University of Science and Technology of China and colleagues have developed a system with 70% collection efficiency. Rather than using a single BBO crystal to create pairs, they utilize two closely spaced BBO crystals separated by a polarization-rotating plate. This “sandwich” configuration generates entangled pairs of photons traveling in the same direction with the same polarization. The boost in efficiency from this output alignment means Wang and colleagues can achieve a high count rate with relatively low input power. To create ten-photon entanglement, the team placed five sandwich structures in a row and illuminated them all with a 0.57-W laser. They then used polarizing beam splitters to combine the photon pairs from each BBO crystal together.

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Subject Areas

Quantum Information

Related Articles

Toward Autonomous Quantum Communication
Quantum Information

Toward Autonomous Quantum Communication

A machine-learning algorithm previously used to solve navigation problems can devise efficient ways to transmit quantum information. Read More »

Protecting Molecular Qubits from Noise
Atomic and Molecular Physics

Protecting Molecular Qubits from Noise

A new proposal for how to encode quantum information in the rotational states of individual molecules could protect these qubits from losing information as a result of noise. Read More »

Fewer Lasers Achieve Higher Fidelity Logic Gate
Atomic and Molecular Physics

Fewer Lasers Achieve Higher Fidelity Logic Gate

Researchers halve the number of lasers needed to implement a quantum logic gate between two different atomic species, a feat that could help to create a scalable quantum computer. Read More »

More Articles