Synopsis

Making Hard Problems for Quantum Computers

Physics 9, s77
Researchers have developed a computer algorithm that doesn’t solve problems but instead creates them for the purpose of evaluating quantum computers.
Courtesy of D-Wave Systems Inc.

The desire for quantum computers stems from their potential to solve certain hard problems faster than classical computers. But those bragging rights haven’t actually been earned yet, as no experiment has shown this presumed speedup. Researchers from the University of Southern California, Los Angeles, and the Complutense University of Madrid, Spain, have devised an algorithm that generates extra hard problems that could offer quantum computers the chance to prove their worth.

The problems that the team focused on belong to the general class of optimization problems. The main example is the Ising model, which describes the interaction of a large number of spins within a lattice. The goal is to find the ground state, which is the orientation of spins that minimizes the interaction energy. The problem is computationally hard because there are many local minima (pseudo-ground-states) that can fool a search algorithm.

Quantum computers—specifically so-called quantum annealers—offer promise for efficiently solving the Ising model and other optimization problems by using quantum superposition to sample all possible minima simultaneously. To test this potential, researchers have randomly generated Ising-type problems tailored to the size of current quantum annealers, such as the 512-qubit D-Wave Two processor. Unfortunately, for this relatively small size, quantum annealers do not show a significant improvement over classical counterparts. In the new study, the researchers propose a way of identifying harder problems so that differences become starker. They have devised an algorithm that starts with a random Ising-type problem and then optimizes the hardness, which is defined by the solution time for a classical computer. The team showed that they could increase the hardness by more than 2 orders of magnitude.

This research is published in Physical Review A.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Subject Areas

Quantum Information

Related Articles

Global Quantum Communication via a Satellite Train
Quantum Information

Global Quantum Communication via a Satellite Train

Long-distance quantum communication can be achieved by directly sending light through space using a train of orbiting satellites that function as optical lenses. Read More »

Error Rate Reduced for Scalable Quantum Technology
Quantum Information

Error Rate Reduced for Scalable Quantum Technology

A scalable system for controlling quantum bits demonstrates a very low error rate, which is essential for making practical devices. Read More »

“Order Up”: A Pair of Photons
Atomic and Molecular Physics

“Order Up”: A Pair of Photons

Researchers use two clouds of rubidium vapor to generate, store, and simultaneously release two photons. Read More »

More Articles