Synopsis: Nuclear Masses Don’t Add Up

The sum of the proton and deuteron masses minus the helium-3 nucleus mass, obtained from a measurement with a molecular ion, remains at odds with the number calculated from accepted values for these masses.

In 2015 Edmund Myers at Florida State University in Tallahassee and colleagues reported measurements of atomic mass ratios that left researchers puzzled. Their data implied that the sum of the masses of the proton and deuteron minus the mass of the helium-3 nucleus, that is, mp+mdmh, was much smaller—by more than 4 standard deviations—than the value deduced by combining accepted values of the individual masses. Something didn’t add up. Either the Myers team’s measurements or the individual mass values were off. A subsequent measurement of the proton mass was made by other researchers, implying that the accepted proton mass had indeed been too large (see 18 July 2017 Synopsis). However, the discrepancy remained at more than 3 standard deviations. Now, in a rerun of their experiment, Myers and co-workers confirm their 2015 result with improved precision.

For their experiments, the team used a Penning trap mass spectrometer. This setup can precisely measure the ratio of the cyclotron frequencies of two trapped ions, from which the ions’ mass ratio is inferred. Myers and colleagues significantly improved their 2015 apparatus, reducing both the inhomogeneity of the trap’s magnetic field and the noise in the apparatus detection circuit. They then redid their measurement of the ratio of the masses of 3He+ and the molecular ion HD+, which can be converted to mp+mdmh. Because of the reduced uncertainty, their result again differs by more than 4 standard deviations from the value calculated using the updated smaller proton mass and the masses of the deuteron and of the helium-3 nucleus. The finding may have implications for the proposed revision of the International System of Units (SI) in terms of fundamental constants.

This research is published in Physical Review A.

­–Ana Lopes

Ana Lopes is a Senior Editor of Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Biological Physics

A New Gauge for Age

Read More »

Related Articles

Viewpoint: Ion Clock Busts into New Precision Regime
Atomic and Molecular Physics

Viewpoint: Ion Clock Busts into New Precision Regime

An aluminum ion clock has a fractional-frequency uncertainty of less than one part in 1018, a four-decades-long goal in precision. Read More »

Focus: Molecular Probe Uses a Polarization Flip
Atomic and Molecular Physics

Focus: Molecular Probe Uses a Polarization Flip

A new way of probing molecules with handedness involves a light pulse in which the polarization changes in the middle of a single wave cycle. Read More »

Focus: How to Guide Each Ion in a Beam
Atomic and Molecular Physics

Focus: How to Guide Each Ion in a Beam

A new ion beam system provides individualized control over every ion’s trajectory as it moves toward a target. Read More »

More Articles