Synopsis: Mimicking the Brain

Circuits built using strongly correlated electron materials can simulate brain functions such as learning and storing memories.
Synopsis figure
Sieu Ha/Harvard University

Neuromimetic devices—artificial electronics that mimic the brain’s neurons—could be used to study how the brain works or to design circuits that borrow from the brain’s computing ability. Such devices emulate neurons and the synapses between them with voltage-driven circuits that exchange signals in a connected network. But conventional circuits cannot easily reproduce the synapses’ ability to strengthen and weaken over time with stimulation—a key property, known as “plasticity,” that forms the basis of learning and memory. A research group at Harvard University, led by Shriram Ramanathan, has now demonstrated neuromimetic circuits that replicate the plasticity of synapses. Their schemes are able to simulate a variety of neural processes: learning, unlearning, and storing memories.

The authors use a synapse-like unit they previously demonstrated: a transistor whose current depends on the resistivity of its channel, made of a samarium nickel oxide (SNO). SNO’s properties are key to plasticity: unlike conventional semiconductors, this strongly correlated system can have a much greater range of possible resistivity states. When the synapse is stimulated electrically, the resistivity changes to a different value. Based on such plastic behavior, the researchers demonstrate small circuits, consisting of several transistors, which carry out a variety of neural functions. The devices are capable, for instance, of learning that two stimuli are linked (like the association between food and a bell ring in Pavlov’s famous experiments with dogs). They can also unlearn (if the stimuli are not coupled for some time, the association is forgotten) and store memories of received stimuli.

This research is published in Physical Review Applied.

–Matteo Rini


Features

More Features »

Announcements

More Announcements »

Subject Areas

Nonlinear DynamicsBiological PhysicsMedical Physics

Previous Synopsis

Atomic and Molecular Physics

Making Molecules Stand to Attention

Read More »

Next Synopsis

Soft Matter

Getting the Wrinkles Out

Read More »

Related Articles

Viewpoint: Low Efficiency Spotted in a Molecular Motor
Biological Physics

Viewpoint: Low Efficiency Spotted in a Molecular Motor

A detailed study of kinesin—a molecular motor responsible for transporting cellular cargo—shows that it loses 80% of input energy to heat. Read More »

Synopsis: Pinning down the Chemistry of Photosynthetic Water Splitting  
Biological Physics

Synopsis: Pinning down the Chemistry of Photosynthetic Water Splitting  

A time-resolved x-ray study indicates that certain chemical changes of oxygen atoms during photosynthesis occur in a different order than current models predict. Read More »

Focus: A Physical Model for Neurodegenerative Disease
Biological Physics

Focus: A Physical Model for Neurodegenerative Disease

Computer simulations of the diffusion and aggregation of harmful proteins in the brain reproduce the pattern of damage seen in several neurodegenerative diseases. Read More »

More Articles