Synopsis: Mimicking the Brain

Circuits built using strongly correlated electron materials can simulate brain functions such as learning and storing memories.
Synopsis figure
Sieu Ha/Harvard University

Neuromimetic devices—artificial electronics that mimic the brain’s neurons—could be used to study how the brain works or to design circuits that borrow from the brain’s computing ability. Such devices emulate neurons and the synapses between them with voltage-driven circuits that exchange signals in a connected network. But conventional circuits cannot easily reproduce the synapses’ ability to strengthen and weaken over time with stimulation—a key property, known as “plasticity,” that forms the basis of learning and memory. A research group at Harvard University, led by Shriram Ramanathan, has now demonstrated neuromimetic circuits that replicate the plasticity of synapses. Their schemes are able to simulate a variety of neural processes: learning, unlearning, and storing memories.

The authors use a synapse-like unit they previously demonstrated: a transistor whose current depends on the resistivity of its channel, made of a samarium nickel oxide (SNO). SNO’s properties are key to plasticity: unlike conventional semiconductors, this strongly correlated system can have a much greater range of possible resistivity states. When the synapse is stimulated electrically, the resistivity changes to a different value. Based on such plastic behavior, the researchers demonstrate small circuits, consisting of several transistors, which carry out a variety of neural functions. The devices are capable, for instance, of learning that two stimuli are linked (like the association between food and a bell ring in Pavlov’s famous experiments with dogs). They can also unlearn (if the stimuli are not coupled for some time, the association is forgotten) and store memories of received stimuli.

This research is published in Physical Review Applied.

–Matteo Rini


Features

More Features »

Announcements

More Announcements »

Subject Areas

Nonlinear DynamicsBiological PhysicsMedical Physics

Previous Synopsis

Atomic and Molecular Physics

Making Molecules Stand to Attention

Read More »

Next Synopsis

Soft Matter

Getting the Wrinkles Out

Read More »

Related Articles

Focus: How 1000 Bacterial Species Can Coexist
Biological Physics

Focus: How 1000 Bacterial Species Can Coexist

The surprising stability of large and diverse bacterial communities can be explained by a model that emphasizes the microbes’ food requirements. Read More »

Synopsis: Connecting Noisy Single-Cell Dynamics to Smooth Population Growth
Biological Physics

Synopsis: Connecting Noisy Single-Cell Dynamics to Smooth Population Growth

A new theoretical framework connects the exponential growth of a cell population to the stochastic replication of individual cells within the population. Read More »

Viewpoint: Brain Motion Under Impact
Nonlinear Dynamics

Viewpoint: Brain Motion Under Impact

A numerical study suggests that head impacts primarily induce a few low-frequency, damped modes of vibration in brain tissue, a finding that could inform the design of sports helmets. Read More »

More Articles