Synopsis: Quantum coherence in cold baths

Spin decoherence is a fundamental obstacle in quantum computation and spintronics. Scientists show they can increase the lifetime of a localized spin in a diamond lattice up to 100 times by polarizing the surrounding spins on the lattice.
Synopsis figure

Nitrogen vacancy centers occur in diamond when a nitrogen atom substitutes for a carbon atom, adjacent to a carbon vacancy. These naturally occurring defects are useful systems in which to study quantum information storage because they possess a localized spin that has a relatively long spin coherence time.

The coherence time of the spin on a nitrogen vacancy center is ultimately limited by fluctuations in its environment (in this case, the fluctuating electron spins on surrounding nitrogen defects). In the current issue of Physical Review Letters, Susumu Takahashi, Ronald Hanson, Johan van Tol, Mark Sherwin, and David Awschalom report they can extend the lifetime of the spin on a nitrogen vacancy center by polarizing the surrounding “spin bath” of nitrogen spins. With electron paramagnetic resonance they estimate that the nitrogen spins are 99.4% polarized in a field of 8 T at 2 K. This very high degree of polarization of the bath lengthens the spin coherence time of the nitrogen vacancy centers by almost two orders of magnitude. - Daniel Ucko


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationSpintronics

Previous Synopsis

Gravitation

Post-Minkowski gravity

Read More »

Next Synopsis

Atomic and Molecular Physics

Potassium atoms feel a distant attraction

Read More »

Related Articles

Synopsis: A Lens to Focus Spins
Quantum Information

Synopsis: A Lens to Focus Spins

A quantum bit stored in the spin excitation of an atomic cloud could be “focused” onto the quantum state of a single atom. Read More »

Synopsis: Quantum Annealers Limited by Temperature
Quantum Information

Synopsis: Quantum Annealers Limited by Temperature

Calculations show that quantum annealing—the quantum computing method used in a commercially available device—is hampered by thermal effects. Read More »

Synopsis: Radioactive Qubits
Atomic and Molecular Physics

Synopsis: Radioactive Qubits

The trapping and cooling of the radioactive isotope barium-133 offers up an attractive system for encoding quantum information. Read More »

More Articles