Synopsis

Eliminating charge noise

Physics 2, s114
A proposal for how to design a superconducting qubit solves the problem of decoherence caused by randomly charged impurities.
Illustration: J. Koch et al., Phys. Rev. Lett. (2009)

In a paper appearing in Physical Review Letters, Jens Koch, Vladimir Manucharyan, Michel Devoret, and Leonid Glazman from Yale University in the US find a correspondence between the Cooper-pair box and its inductively shunted partner. Despite the obvious change from a discrete to a continuous spectrum of the charge operator, the excitation spectra of the two systems are found to be closely related. In particular, charging effects are observable in the dynamical response function of the inductively shunted system, which exhibits distinct peaks at frequencies governed by the spectrum of the isolated Cooper-pair box. Therefore, addressing the inductance-shunted Cooper-pair box solely by ac voltages, i.e., microwave radiation, solves the problem of realizing a stable, charge-noise-free Cooper-pair-box artificial atom. These ideas form the basis for a new type of Josephson-junction device called the fluxonium (presented by the same authors in an experimental paper, see Ref. [1]) that consists of a small junction shunted with the large inductance from a series array of large-capacitance tunnel junctions. – Sarma Kancharla

[1] V. Manucharyan, Science 326, 113 (2009).

Correction (27 November 2009): Corrections were made to the first and last sentences of the first paragraph.


Subject Areas

Quantum InformationMesoscopicsNanophysics

Related Articles

Enhanced Interactions Using Quantum Squeezing
Quantum Information

Enhanced Interactions Using Quantum Squeezing

A quantum squeezing method can enhance interactions between quantum systems, even in the absence of precise knowledge of the system parameters. Read More »

How to Speed up a Quantum Network
Quantum Information

How to Speed up a Quantum Network

Sending photons to a remote site in groups should allow quantum links to be more rapidly established across future quantum networks than if photons are sent one at a time. Read More »

Shape Matters in Self-Assembly
Nanophysics

Shape Matters in Self-Assembly

A theoretical study of self-assembly finds that hexagon-shaped building blocks can form large structures faster than triangular or square blocks. Read More »

More Articles