Synopsis: In thin air

The principles of nonequilibrium thermodynamics simplify the statistical description of the flow of a rarefied gas.
Synopsis figure

In a sufficiently rarefied gas, the tools of standard hydrodynamics, namely, the Navier-Stokes-Fourier equations (based on Newton’s second law applied to fluid motion), no longer apply. On the other hand, tracking the statistics of individual molecules, as is done in Boltzmann’s kinetic equation approach, is computationally prohibitive.

Writing in Physical Review Letters, Hans Christian Öttinger at the ETH in Zurich, Switzerland, strengthens a description of rarefied gas flow that is intermediate between these two extremes. Previous work showed that Boltzmann’s kinetic equation can yield a set of 13 moment equations that describe the momentum of the gas and heat flux within it. In his work, Öttinger looks to the laws of nonequilibrium thermodynamics to provide the necessary constraints on the equations. For example, entropy is conserved in reversible processes and standard hydrodynamics is recovered in the limiting case.

The results could advance efforts—particularly those based on numerical calculations—to describe the kinetics of nonequilibrium gases. These calculations are important for understanding gas flow in the smallest of channels—as in microfluidics—and aerodynamics of satellites and space stations in the outer limits of our atmosphere. – Jessica Thomas


Features

More Features »

Subject Areas

Statistical Physics

Previous Synopsis

Related Articles

Viewpoint: Landauer Principle Stands up to Quantum Test
Quantum Information

Viewpoint: Landauer Principle Stands up to Quantum Test

A fundamental limit on the heat produced when erasing a bit of information has been confirmed in a fully quantum system. Read More »

Viewpoint: Listening for the Cosmic Hum of Black Holes
Statistical Physics

Viewpoint: Listening for the Cosmic Hum of Black Holes

A new analysis technique would allow the gravitational-wave “background” from distant black hole mergers to be detected in days instead of years. Read More »

Focus: City Structure Influences Nighttime Temperatures
Statistical Physics

Focus: City Structure Influences Nighttime Temperatures

Mathematical analysis of the two-dimensional layout of a city reveals much about its three-dimensional structure and provides useful measures of the urban heat island effect. Read More »

More Articles