Synopsis

Copying DNA despite defects

Physics 3, s72
DNA replication slows if the number of defects in a genome is above a threshold value.

When a cell divides, it must replicate its entire genome. The replication machinery unzips the double helix at many locations as it builds up the copies, but sometimes the unzipping hits a snag when encountering a defect. There is no complete theory describing the effects of such defects, which can lead to death in embryonic cells or cancer in adult cells.

In a paper in Physical Review Letters, Michel Gauthier, John Herrick, and John Bechhoefer of Simon Fraser University in Canada extend a defect-free theory to account for defects. They find that in healthy cells, the defect density is too low to affect the replication rate. A stalled replication process simply delays replication of nearby DNA while it waits for another replication complex to arrive from the other direction. But if the defect density is above a threshold value—similar to the percolation threshold seen in network theory—the “delayed region” near each defect can overlap with that of a neighbor and globally affect the replication.

As replication slows, the number of replication-initiating sites in a cell increases. Some biologists have speculated that some active cellular system may be responding to the slow-down. But Gauthier et al. show that such a response is automatic in their model—a fixed initiation rate leads to a higher density of initiation sites because the slower replication allows more time. – David Ehrenstein


Subject Areas

Biological PhysicsInterdisciplinary Physics

Related Articles

Uncovering Networks in Rainforest Plants
Biological Physics

Uncovering Networks in Rainforest Plants

The spatial arrangement of plants in a rainforest corresponds to a special “critical” state that could be vital for ecosystem robustness.   Read More »

Shape Matters in Self-Assembly
Nanophysics

Shape Matters in Self-Assembly

A theoretical study of self-assembly finds that hexagon-shaped building blocks can form large structures faster than triangular or square blocks. Read More »

The Neuron vs the Synapse: Which One Is in the Driving Seat?
Complex Systems

The Neuron vs the Synapse: Which One Is in the Driving Seat?

A new theoretical framework for plastic neural networks predicts dynamical regimes where synapses rather than neurons primarily drive the network’s behavior, leading to an alternative candidate mechanism for working memory in the brain. Read More »

More Articles