Synopsis: Sharp end

Mapping out the force between two molecules offers a way to test out a new, high-resolution force microscopy technique.
Synopsis figure
Credit: Z. Sun et al., Phys. Rev. Lett. (2011)

There are several tricks of the trade in atomic force microscopy (AFM) for obtaining images of surfaces with atomic level resolution. Scientists recently added to this toolkit when they showed that terminating an AFM tip in a single carbon monoxide molecule allowed them to image individual atoms in pentacene.

Writing in Physical Review Letters, Zhixiang Sun and colleagues at the University of Utrecht, Netherlands, apply this relatively new technique to map out, in three dimensions, the chemical forces between two carbon monoxide molecules.

As the oscillating tip of an AFM approaches the atoms or molecules on a surface, it experiences both attractive (van der Waals) and repulsive (Pauli) forces. Measuring these forces with sufficient accuracy—one of many applications of AFM—requires that the tip be sufficiently near the surface that these forces exert a sizable shift on its resonance frequency, but not so close that the tip actually bends or moves the molecules.

In their work, Sun et al. identify the optimal distance range within which to measure the chemical forces between a carbon monoxide molecule dangling from the AFM tip and an identical molecule on a copper surface. Their force map is qualitatively similar to that expected between two isolated molecules, free of the complications arising from the presence of the AFM tip and the substrate. Sun et al. note, however, that this result may not hold in all experiments, as short-range repulsive interactions can cause either molecule to bend and obscure the interpretation of the force measurements. – Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

NanophysicsChemical Physics

Previous Synopsis

Spintronics

Two in one

Read More »

Next Synopsis

Materials Science

X-raying the skin

Read More »

Related Articles

Viewpoint: Inducing Multiple Reactions with a Single Photon
Atomic and Molecular Physics

Viewpoint: Inducing Multiple Reactions with a Single Photon

Using an optical cavity to couple several molecules can potentially set up a chemical chain reaction that requires just one photon to initiate. Read More »

Viewpoint: Squeezed Environment Boosts Engine Performance
Nanophysics

Viewpoint: Squeezed Environment Boosts Engine Performance

A tiny engine can surpass the Carnot limit of efficiency when researchers engineer the thermal properties of the environment. Read More »

Synopsis: Transistor Breaks Law of Thermal Conductivity
Nanophysics

Synopsis: Transistor Breaks Law of Thermal Conductivity

A single-electron transistor carries more heat than that predicted by the Wiedemann-Franz law linking thermal and electrical conductivities. Read More »

More Articles