Synopsis: Thinking Inside the Box

Finding the optimal solution to filling a volume with spheres could be useful for modeling nanoparticles.
Synopsis figure
C. L. Phillips et al., Phys. Rev. Lett. (2012)

Deceptively simple questions like “How many gumballs fit in a box?” or “How many stamps does it take to cover an orange?” are at the heart of some really hard problems in applied mathematics; namely, the “packing problem” and the “covering problem.” Writing in Physical Review Letters, Carolyn Phillips at the University of Michigan, Ann Arbor, and colleagues take steps to tackle filling, a new optimization problem in between packing and covering.

A two-dimensional version of the question Phillips et al. address might be posed like this: Imagine you have a square window and you want to block out as much light as possible by taping some opaque circular tiles to the glass. You can use a mixture of tiles with any radius, and they can overlap with each other, but you only have money to buy five. As a general optimization problem, this amounts to asking “What is the best way to place N overlapping circles (or, in 3D, spheres) of any size within a bounded area (volume) so as to fill it?”

The authors show that for a given shape, they only need to consider solutions where the circles or spheres lie on the shape’s medial axis—a linelike representation of the shape’s topology—and, as an example, present a numerical strategy for optimally filling 2D polygons with N circles.

Phillips et al. became interested in the filling problem as a means to help them model interactions between nanoparticles, which can be approximated as rigid bodies of overlapping spheroids. But the work could, according to the authors, be applicable to computer animation, where graphic artists look for ways to describe complex shapes with a minimum of simple, overlapping volumes. – Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

NanophysicsSoft Matter

Previous Synopsis

Materials Science

Scaling the Heights

Read More »

Next Synopsis

Quantum Information

Polarized Light in Safe Storage

Read More »

Related Articles

Synopsis: Plasmon Thermometers for Silicon
Semiconductor Physics

Synopsis: Plasmon Thermometers for Silicon

Electron oscillations in silicon may be used to map, with nanometer resolution, the temperatures across a silicon device. Read More »

Focus: How to Sculpt a Crystal
Soft Matter

Focus: How to Sculpt a Crystal

A new technique allows researchers complete control over the shapes of individual subcrystals within a larger crystal, which could lead to new ways to modify material properties. Read More »

Synopsis: A New Gauge for Age
Biological Physics

Synopsis: A New Gauge for Age

Wound healing experiments suggest that biological aging can be defined in a similar way to physical aging in soft materials like glasses. Read More »

More Articles