Synopsis: Classifying Protein Wiggles

Two different mechanisms give a protein its required flexibility.
Synopsis figure
Courtesy Jerry Parks/ORNL

Proteins rely on changes in their shape to function properly. Scientists therefore pay close attention to small changes in protein structure, but not all “wiggles” are equal. A new study, combining neutron and light scattering experiments with molecular dynamics simulations, shows how measurements of protein flexibility can be used to distinguish elastic vibrations from true conformational alterations. The results, described in Physical Review Letters, explain certain protein behaviors, such as why protein flexibility sometimes increases dramatically with temperature.

To drive chemical processes, proteins often have to physically fit, like keys, with other molecules. Wiggling into place, the protein may make conformational changes, in which atoms in the molecule jump from one potential energy well to another. But protein flexibility also comes from atoms fluctuating elastically inside a single potential well. Elastic and conformational changes should depend differently on temperature and hydration, but previous studies of protein flexibility have typically not separated the two contributions.

Liang Hong of the Oak Ridge National Laboratory, US, and colleagues have developed an effective way to disentangle elastic and conformational movements. They first measured the flexibility—as is often done—using incoherent neutron scattering, which records the atomic displacements (mostly of hydrogen atoms) in a particular protein. Comparing these displacement data to molecular dynamics simulations, they realized that the elastic fluctuations of individual atoms could be inferred from vibrational excitations of the full molecule, which they measured by light scattering experiments. By separating out the elastic part, the researchers showed that high protein flexibility at room temperature is due primarily to a higher rate of conformational changes. – Michael Schirber


Features

More Features »

Announcements

More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Quantum Information

Useful Impurities

Read More »

Next Synopsis

Astrophysics

Seeing into the Void

Read More »

Related Articles

Synopsis: How Hairy Tongues Help Bats Drink Nectar
Fluid Dynamics

Synopsis: How Hairy Tongues Help Bats Drink Nectar

Experiments and theory show that hairs on a bat’s tongue allow the animal to drink 10 times more nectar than it could if its tongue were smooth. Read More »

Synopsis: Soft Tissues with Sharp Boundaries
Biological Physics

Synopsis: Soft Tissues with Sharp Boundaries

A model for cellular populations incorporates neighbor-specific interactions to explain sharp boundaries observed around tissues. Read More »

Viewpoint: 3D Imaging of Hopping Molecules
Biological Physics

Viewpoint: 3D Imaging of Hopping Molecules

The 3D motion of molecules at a solid-liquid interface is directly imaged for the first time. Read More »

More Articles