Synopsis: Hitting Reset After a Quantum Measurement

Quantum information lost after a measurement can be recovered using quantum error correction methods.
Synopsis figure
P. Schindler et al., Phys. Rev. Lett. (2013)

Measuring a quantum object singles out a quantum state from a set of possible states. The process is irreversible, since the object retains no information about its premeasurement uncertainty. However, a group of physicists have devised a kind of “data recovery” process based on error correction techniques used in quantum computing. As described in Physical Review Letters, they measured one part of an entangled quantum system and then used the other, unmeasured part to reset everything to the preobserved state.

In a quantum computer, the unit of information is a qubit that exists in two states, “zero” and “one,” at the same time. This superposition is not directly observable, since measuring a qubit can only return either “zero” or “one.” The initial state is irretrievable once a measurement is made, making it impossible to backup (or “clone”) a qubit to compensate for errors in quantum computing. However, by entangling multiple qubits, quantum error correction creates a cross-check for spotting data corruption.

Errors and measurements induce similar changes to a quantum system. Therefore, Philipp Schindler of the University of Innsbruck in Austria and his colleagues adapted an error correction protocol to recover quantum information following a measurement. They started by encoding an arbitrary initial state on a system of three trapped calcium ions. They then temporarily excited two of the ions to energetically isolate them from a light beam that measured whether the third ion was in the “zero” or “one” state. To undo the effects of this measurement, the team re-cooled the ion and then re-imprinted the initial state using the two unmeasured ions. The final three-ion configuration matched the original at a level of around 84%. – Michael Schirber


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum Information

Previous Synopsis

Next Synopsis

Particles and Fields

Higgs-like Particle in a Mirror

Read More »

Related Articles

Viewpoint: Seeing Scrambled Spins
Atomic and Molecular Physics

Viewpoint: Seeing Scrambled Spins

Two experimental groups have taken a step towards observing the “scrambling” of information that occurs as a many-body quantum system thermalizes.   Read More »

Viewpoint: Type-II Dirac Fermions Spotted
Quantum Information

Viewpoint: Type-II Dirac Fermions Spotted

Three separate groups report experimental evidence of novel type-II Dirac quasiparticles, suggesting possible applications in future quantum technology. Read More »

Viewpoint: A Roadmap for a Scalable Topological Quantum Computer
Condensed Matter Physics

Viewpoint: A Roadmap for a Scalable Topological Quantum Computer

A team of experimentalists and theorists proposes a scalable protocol for quantum computation based on topological superconductors. Read More »

More Articles