Synopsis: Vector Potentials Rule

A famous thought experiment on quantum particles in magnetic fields has been realized with nanostructures.
Synopsis figure
P. Khatua et al., Phys. Rev. Lett. (2014)

Richard Feynman, in his well-known physics lectures, concocted a thought experiment to illustrate one of the more surprising manifestations of quantum mechanics. He imagined a double-slit experiment in which electrons passed around a long, thin magnetic solenoid on their way to forming an interference pattern. When the solenoid is turned on, the phase of an electron’s wave function is changed, even though there is no magnetic field outside the coil, a phenomenon called the Aharonov-Bohm effect that has been experimentally confirmed many times. Now, Feynman’s original gedankenexperiment has been experimentally realized in modern form by Pradip Khatua of the Weizmann Institute, Israel, and colleagues. Using a device called a quantum point contact, they confirm Feynman’s vision but also show that such devices may be useful in spintronics.

Outside a solenoid, even though the magnetic field can be vanishingly small, the vector potential is nonzero. It is this vector potential that affects the phase of electrons in flight. To show this, Khatua et al. fabricated a microscopic diffraction instrument in which electrons pass through a tiny orifice, with and without a vector potential imposed by an external magnetic field.

The results, published in Physical Review Letters, show that as the vector potential is increased, the detected diffraction pattern shifts owing to the change in phase. And precisely as Feynman calculated, the phase change is equivalent to shifting the diffraction pattern by the Lorentz force acting on classical charged particles. Khatua et al. also point out that such structures could act as electron traffic controllers, manipulating spin-polarized electrons in spintronic devices. – David Voss


More Features »


More Announcements »

Subject Areas

Quantum Physics

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

Fermi Gas Goes into Deep Degeneracy

Read More »

Related Articles

Synopsis: Speeding Up Battery Charging with Quantum Physics
Quantum Physics

Synopsis: Speeding Up Battery Charging with Quantum Physics

Calculations show that charging a set of batteries can go faster if the batteries are coupled together quantum mechanically. Read More »

Viewpoint: Photonic Hat Trick

Viewpoint: Photonic Hat Trick

Two independent groups have provided the first experimental demonstration of genuine three-photon interference. Read More »

Synopsis: Soothing Quantum Effects  
Quantum Physics

Synopsis: Soothing Quantum Effects  

Quantum-mechanical effects may remove some unphysical features of spacetime predicted by classical general relativity.   Read More »

More Articles