Synopsis: Repulsion Helps Virus Pack DNA

The motor that packs DNA into a virus works best if the DNA has some self-repulsion.

A virus in the process of assembling uses a molecular motor to pull a long strand of DNA produced by the host cell into its newly constructed external shell. The negatively charged DNA is self-repulsive, and as it collects inside, the packaging motor has to push against an increasing outward pressure. But experiments reported in Physical Review Letters show that, surprisingly, switching the DNA self-interaction from repulsion to attraction doesn’t help the motor. It works fastest when there is some degree of repulsion, perhaps because the repulsion can prevent the biopolymer from becoming entangled with itself, like a long strip of sticky tape.

Douglas Smith of the University of California, San Diego, and his colleagues, used optical tweezers to track the motion of a DNA strand as it was “reeled in” by an assembling virus. They compared the motor’s performance in a standard solution with that of two other conditions—low and high concentrations of the positively charged molecule spermidine. At the lower concentration, spermidine screens the negatively charged DNA polymer, reducing but not eliminating its self-repulsion. At the higher spermidine concentration, DNA becomes self-attractive.

As expected, the reduced self-repulsion of DNA in the low-spermidine condition led to more rapid packaging than the standard solution. But the team was surprised that high concentrations of spermidine (self-attractive DNA) did not further accelerate packaging. Instead, it frequently caused the motor to stall or to operate more slowly. The team proposes that some degree of repulsion is required to keep the DNA orderly during the packaging process. – David Ehrenstein


Features

More Features »

Announcements

More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Quantum Information

Spooky Bidding

Read More »

Next Synopsis

Related Articles

Synopsis: Explaining Grid-Cell Firing
Biological Physics

Synopsis: Explaining Grid-Cell Firing

A model explains why grid cells—neurons that are part of the brain’s positioning system—fire electrical pulses in hexagonal patterns. Read More »

Synopsis: Bacteria Never Swim Alone
Biological Physics

Synopsis: Bacteria Never Swim Alone

Simulations and theory indicate that the “synchronized swimming” of bacteria occurs in much sparser suspensions of the microorganisms than expected. Read More »

Synopsis: Sensing Earthly Magnetic Fields
Magnetism

Synopsis: Sensing Earthly Magnetic Fields

An organic material’s resistance changes measurably in weak magnetic fields, with a sensitivity similar to that of migrating birds. Read More »

More Articles