Synopsis

Terahertz Combs Get Fine Teeth

Physics 8, s46
A new scheme to generate terahertz frequency combs features unprecedented bandwidth and frequency accuracy.
Brandon Carroll/California Institute of Technology

Frequency combs—light sources whose spectra are made of a series of discreet, equally spaced frequencies—can be used as rulers that measure the light emitted by atoms or molecules with extraordinarily high precision. Most frequency combs work in the visible or infrared, but terahertz combs would allow more precise measurements of rotational and vibrational resonances of molecules and materials. A team led by Geoffrey Blake at the California Institute of Technology, Pasadena, has now demonstrated a terahertz comb that features greater bandwidth and better frequency precision than current technologies.

The most common way to make a frequency comb is through so called “mode-locked” lasers. Such lasers emit a train of short pulses, whose spectrum is a frequency comb. The authors started with an infrared mode-locked laser and used it to excite currents in an “antenna,” which emitted lower frequency terahertz pulses. A second infrared laser detected the electric field of the terahertz pulses by “sensing” how they modified the index of refraction of a crystal in which the two beams co-propagated. Although this approach is not new, the authors found new ways to stabilize the frequencies of the two lasers and minimize noise. As a result, they were able to achieve, over a spectral range extending up to 2.4 terahertz, a frequency precision of a few parts per billion—over two orders of magnitude better than existing schemes for this spectral region.

With their setup, Blake and his co-workers determined the frequency of several rovibrational transitions of water vapor with a precision that was limited only by the molecules’ motion. The researchers plan to use the setup to measure precise reference spectra of molecules, which will help interpret astrophysical spectra measured by the Hershel Space Observatory and the Atacama Large Millimeter Array.

This research is published in Physical Review Letters.

–Matteo Rini.


Subject Areas

OpticsChemical Physics

Related Articles

Ejected Electron Slows Molecule’s Rotation
Chemical Physics

Ejected Electron Slows Molecule’s Rotation

Sometimes a rotating molecule can transition to a new state only if an electron carries away some of the molecule’s angular momentum. Read More »

Probing the Rotational Doppler Effect with a Single Ion
Atomic and Molecular Physics

Probing the Rotational Doppler Effect with a Single Ion

A light beam with orbital angular momentum can produce the rotational analog of the Doppler effect on an ion. Read More »

Cleaning Intense Laser Pulses with Plasma
Optics

Cleaning Intense Laser Pulses with Plasma

When two laser beams converge on a volume of gas, their interference creates a diffraction grating made of plasma that can divert and shape a third beam. Read More »

More Articles